Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Opt Express ; 30(17): 30494-30506, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36242152

RESUMEN

In this work, we present high-performance surface plasmonic sensors using gold nanostructures and Bragg photonic structures. The gold film on the Bragg structure provides Tamm plasmon states (TPs). The Fano coupling between higher order TPs and Bloch-wave surface plasmon polariton (BW-SPP) on the gold nanoslit array results in a new hybrid Tamm-plasmon mode. Using finite-difference time-domain calculations, we demonstrate that the hybrid mode has the advantages of high surface sensitivity of BW-SPP mode and high resonant quality of Tamm state. The calculated plasmonic field distribution shows that the hybrid mode has a similar evanescent distribution with BW-SPP mode on gold surface and TPs field in the Bragg structure. The experimental results verify that the hybrid mode has one hundred times higher wavelength sensitivity than the Tamm state. The figure of merit of the hybrid mode is five times better than the BW-SPP mode in conventional nanoslit arrays. The real-time sensorgram further confirms that the hybrid mode has a much higher sensitivity and better signal to noise ratios in the biomolecular interaction measurement.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Técnicas Biosensibles/métodos , Oro/química , Nanoestructuras/química , Fotones , Resonancia por Plasmón de Superficie/métodos
2.
Opt Express ; 30(12): 22233-22246, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-36224926

RESUMEN

We propose a measurement method for sensitive and label-free detections of virus-like particles (VLPs) using color images of nanoplasmonic sensing chips. The nanoplasmonic chip consists of 5×5 gold nanoslit arrays and the gold surface is modified with specific antibodies for spike protein. The resonant wavelength of the 430-nm-period gold nanoslit arrays underwater environment is about 570 nm which falls between the green and red bands of the color CCD. The captured VLPs by the specific antibodies shift the plasmonic resonance of the gold nanoslits. It results in an increased brightness of green pixels and decreased brightness of red pixels. The image contrast signals of (green - red) / (red + green) show good linearity with the surface particle density. The experimental tests show the image contrast method can detect 100-nm polystyrene particles with a surface density smaller than 2 particles/µm2. We demonstrate the application for direct detection of SARS-CoV-2 VLPs using a simple scanner platform. A detection limit smaller than 1 pg/mL with a detection time less than 30 minutes can be achieved.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Nanoestructuras , Anticuerpos , Técnicas Biosensibles/métodos , Oro/química , Humanos , Nanoestructuras/química , Poliestirenos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Resonancia por Plasmón de Superficie/métodos
3.
J Nanobiotechnology ; 20(1): 6, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983543

RESUMEN

BACKGROUND: Gold nanoparticles (AuNPs) have been widely used in local surface plasmon resonance (LSPR) immunoassays for biomolecule sensing, which is primarily based on two conventional methods: absorption spectra analysis and colorimetry. The low figure of merit (FoM) of the LSPR and high-concentration AuNP requirement restrict their limit of detection (LOD), which is approximately ng to µg mL-1 in antibody detection if there is no other signal or analyte amplification. Improvements in sensitivity have been slow in recent for a long time, and pushing the boundary of the current LOD is a great challenge of current LSPR immunoassays in biosensing. RESULTS: In this work, we developed spectral image contrast-based flow digital nanoplasmon-metry (Flow DiNM) to push the LOD boundary. Comparing the scattering image brightness of AuNPs in two neighboring wavelength bands near the LSPR peak, the peak shift signal is strongly amplified and quickly detected. Introducing digital analysis, the Flow DiNM provides an ultrahigh signal-to-noise ratio and has a lower sample volume requirement. Compared to the conventional analog LSPR immunoassay, Flow DiNM for anti-BSA detection in pure samples has an LOD as low as 1 pg mL-1 within only a 15-min detection time and 500 µL sample volume. Antibody assays against spike proteins of SARS-CoV-2 in artificial saliva that contained various proteins were also conducted to validate the detection of Flow DiNM in complicated samples. Flow DiNM shows significant discrimination in detection with an LOD of 10 pg mL-1 and a broad dynamic detection range of five orders of magnitude. CONCLUSION: Together with the quick readout time and simple operation, this work clearly demonstrated the high sensitivity and selectivity of the developed Flow DiNM in rapid antibody detection. Spectral image contrast and digital analysis further provide a new generation of LSPR immunoassay with AuNPs.


Asunto(s)
Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/aislamiento & purificación , Resonancia por Plasmón de Superficie/métodos , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Prueba Serológica para COVID-19/instrumentación , Diseño de Equipo , Oro/química , Humanos , Inmunoensayo/instrumentación , Inmunoensayo/métodos , Nanopartículas del Metal/química , SARS-CoV-2/inmunología , Saliva/virología , Glicoproteína de la Espiga del Coronavirus/inmunología , Resonancia por Plasmón de Superficie/instrumentación
4.
Opt Lett ; 46(4): 705-708, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33577494

RESUMEN

A simple design for shifting the resonance wavelength of silver nanoslits using an electrowetting-on-dielectric (EWOD) cell is proposed. The EWOD cell comprises a polycarbonate (PC) substrate with Teflon-coated silver nanoslits and a glass substrate with Teflon-coated electrodes. A glycerol droplet is placed between the two substrates, and out of the path of a probe beam at zero electric field. Application of an electric field smaller than 0.3 V/µm on the electrodes moves the glycerol droplet into the path of the probe beam, shifting the resonance wavelength of the silver nanoslits by 135 nm. A change (0.33) in the refractive index of the effective medium that is adjacent to the silver nanoslits causes a large shift in the resonance wavelength. The spectral shift of the silver nanoslits is repeatable by the electric field. This simple design is a great achievement for high-performance electro-optical devices with large wavelength shift ranges such as optical switches, variable optical attenuators, and sensor applications.

5.
Analyst ; 146(18): 5584-5591, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34369484

RESUMEN

COVID-19 has shown that a highly specific and rapid diagnostic system is a necessity. A spectral imaging-based surface plasmon resonance (SPRi) platform with an integrated microfluidic biosensor to detect oligonucleotide sequences has been proposed to be a promising alternative for infectious diseases due to its safe and straightforward use. Approaches to reduce the DNA probe loading onto gold nanoparticles with various types of polyethylene glycol (PEG) were explored. Here, we demonstrated the stability of functionalised gold nanoparticles with unmodified PEG whilst lowering the probe loading density. The system was evaluated by performing the detection of a mimicking COVID-19 target sequence, single point-mutation sequence and fully mismatch sequence. Highly specific binding of the mimicking COVID-19 target sequence was observed and analysed by the spectral imaging SPR approach. Our work has demonstrated the potential of a controlled probe density using unmodified PEG as an especially promising functionalisation strategy in SPR spectral imaging assays.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Oro , Humanos , Límite de Detección , SARS-CoV-2 , Resonancia por Plasmón de Superficie
6.
Anal Chem ; 92(14): 9674-9681, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32608970

RESUMEN

High-throughput and dynamic measurement for living cell activities can benefit biological research and drug development. A low-cost metallic nanostructure-based surface plasmon resonance (SPR) imaging platform, comprising multiple aluminum nanoslit arrays and a color image device, is proposed for label-free study of cell and drug interactions. The multiple nanoslit sensing arrays were fabricated using the compression-injection molding process. These sensing chips showed a detectable depth of 600 nm and refractive index resolution of ∼5 × 10-5 refractive index unit (RIU) by using a self-referenced two-color analysis. Two examples of kinetic studies of living cells under various doses of drugs are presented. The focal adhesion kinases inhibitor (FAKi 14) and cell interactions show exponential changes of cellular adhesion and time constants for different concentrations of antiadhesion drugs. The anticancer drug (doxorubicin (DOX))-treated cells show slow increases of SPR signals in the first 2 h due to the nucleus swelling. The DOX-treated cells further process plasma membrane disruption and become floating cells and debris in the medium, resulting in rapid drops of the SPR signals.


Asunto(s)
Aluminio/química , Adhesión Celular/efectos de los fármacos , Doxorrubicina/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Nanoestructuras/química , Antineoplásicos/farmacología , Línea Celular , Supervivencia Celular , Colorimetría , Glicerol/química , Humanos , Resonancia por Plasmón de Superficie , Agua
7.
Opt Lett ; 44(17): 4327-4330, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31465394

RESUMEN

Periodic aluminum-capped nanoslit arrays were produced on a polycarbonate plastic substrate by rapid hot embossing nanoimprint lithography and thermal evaporation, and they were used as a transparent window for blue-emitting polymer light-emitting diodes (PLEDs). The external quantum efficiency of blue-emitting PLEDs was enhanced by the surface plasmon polaritons of the periodic aluminum-capped nanoslit arrays. A maximum current efficiency of 4.84 cd/A was achieved for the proposed PLED, which was over 2.2 times that of the reference PLED (2.18 cd/A). These results demonstrate that periodic nanostructure can assist in the simple and low-cost fabrication of high-performance polymer optoelectronic devices.

8.
Analyst ; 145(1): 52-60, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31764916

RESUMEN

Surface plasmon resonance (SPR) nanowire array chips with a microfluidic system are an effective detection method for a rapid test device. This study investigated a capped gold nanowire array and a microfluidic test platform to provide a fundamental understanding of the kinetic binding of SPR nanowires and the surface gold refractive index. The device sensitivity of the SPR nanowire array was 485 nm RIU-1 and the detection limit was 4.1 × 10-5 RIU. Moreover, a kinetic binding analysis also indicated that a peak shift resulted from a specific hybridization of the target molecule with the immobilized probe on the gold nanostructures. The peak shift (red-shift) value of latent membrane protein 1 (LMP1) DNA was 2.21 nm. The results demonstrated that this new method had high sensitivity to detect amplified DNA products without labeling or complex sample treatment. The SPR nanowire chip can detect the PCR products at lower cycle numbers compared to gel electrophoresis due to probe and DNA specificity. Furthermore, the mechanisms of SPR nanowire array fabrication and the detection of the LMP1 gene were studied. The findings can assist in improving the biosensing of DNA-amplified products and in developing rapid detection devices with a small-footprint nanostructured SPR chip.


Asunto(s)
ADN Viral/análisis , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/métodos , Nanocables/química , Resonancia por Plasmón de Superficie/métodos , Proteínas de la Matriz Viral/genética , Secuencia de Bases , Técnicas Biosensibles/métodos , Sondas de ADN/química , Sondas de ADN/genética , ADN Viral/genética , Oro/química , Herpesvirus Humano 4/química , Ácidos Nucleicos Inmovilizados/química , Ácidos Nucleicos Inmovilizados/genética , Límite de Detección , Técnicas Analíticas Microfluídicas/instrumentación , Hibridación de Ácido Nucleico
9.
Sensors (Basel) ; 19(22)2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31717912

RESUMEN

An axicon fiber tip combined with a camera device is developed to sensitively detect refractive indexes in solutions. The transparent axicon tips were made by etching optical fibers through a wet end-etching method at room temperature. When the axicon fiber tip was immersed in various refractive index media, the angular spectrum of the emitted light from the axicon fiber tip was changed. Using a low numerical aperture lens to collect the directly transmitted light, a high intensity sensitivity was achieved when the tip cone angle was about 35 to 40 degrees. We combined the axicon fiber tip with a laser diode and a smartphone into a portable refractometer. The front camera of the smartphone was used to collect the light emitted from the axicon fiber tip. By analyzing the selected area of the captured images, the refractive index can be distinguished for various solutions. The refractive index sensitivity was up to 56,000%/RIU, and the detection limit was 1.79 × 10-5 RIU. By measuring the refractive index change via the axicon fiber tip, the concentration of different mediums can be sensitively detected. The detection limits of the measurement for sucrose solutions, saline solutions, and diluted wine were 8.86 × 10-3 °Bx, 0.12‱, and 0.35%, respectively.

10.
Analyst ; 143(19): 4715-4722, 2018 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-30188550

RESUMEN

The clinical assessment of short-stranded nucleic acid biomarkers such as miRNAs could potentially provide useful information for monitoring disease progression, prompting definitive treatment decisions. In the past decade, advancements in biosensing technology have led to a shift towards rapid, real-time and label-free detection systems; as such, surface plasmon resonance (SPR) biosensor-based technology has become of high interest. Here, we developed an automated multiplex transmissive surface plasmon resonance (t-SPR) platform with the use of a capped gold nanoslit integrated microfluidic surface plasmon resonance (SPR) biosensor. The automated platform was custom designed to allow the analysis of spectral measurements using wavelength shift (dλ), intensity (dI) and novel area change (dA) for surface binding reactions. A simple and compact nanostructure based biosensor was fabricated with multiplex real-time detection capabilities. The sensitivity and specificity of the microfluidic device was demonstrated through the use of functionalised AuNPs for target molecule isolation and signal enhancement in combination with probes on the CG nanoslit surface. Our work allows for the multiplex detection of miRNA at femtomolar concentrations in complex media such as urine.


Asunto(s)
Técnicas Biosensibles , MicroARNs/orina , Resonancia por Plasmón de Superficie , Biomarcadores/orina , Oro , Humanos , Dispositivos Laboratorio en un Chip , Nanopartículas del Metal
11.
Sensors (Basel) ; 18(7)2018 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-29986468

RESUMEN

A spectral integration combined with a threshold method for the analysis of spectral scanning surface plasmon resonance (SPR) images can significantly increase signal recognition at low concentration of antibody solution. The 12-well SPR sensing plates consisted of gold-capped nanowire arrays with 500-nm period, 80-nm linewidth and 50-nm gold thickness which were used for generating multiple SPR images. A threshold method is introduced to eliminate background noises in spectral scanning images. Combining spectral integration and the threshold method, the detection limit of antibody concentration was 1.23 ng/mL. Using multiple-well SPR sensing plates and the proposed analytical method, multiple kinetic responses with spectral and spatial information on different sensing areas can be sensitively measured.

12.
Sensors (Basel) ; 17(7)2017 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-28671600

RESUMEN

We propose two approaches-hot-embossing and dielectric-heating nanoimprinting methods-for low-cost and rapid fabrication of periodic nanostructures. Each nanofabrication process for the imprinted plastic nanostructures is completed within several seconds without the use of release agents and epoxy. Low-cost, large-area, and highly sensitive aluminum nanostructures on A4 size plastic films are fabricated by evaporating aluminum film on hot-embossing nanostructures. The narrowest bandwidth of the Fano resonance is only 2.7 nm in the visible light region. The periodic aluminum nanostructure achieves a figure of merit of 150, and an intensity sensitivity of 29,345%/RIU (refractive index unit). The rapid fabrication is also achieved by using radio-frequency (RF) sensitive plastic films and a commercial RF welding machine. The dielectric-heating, using RF power, takes advantage of the rapid heating/cooling process and lower electric power consumption. The fabricated capped aluminum nanoslit array has a 5 nm Fano linewidth and 490.46 nm/RIU wavelength sensitivity. The biosensing capabilities of the metallic nanostructures are further verified by measuring antigen-antibody interactions using bovine serum albumin (BSA) and anti-BSA. These rapid and high-throughput fabrication methods can benefit low-cost, highly sensitive biosensors and other sensing applications.


Asunto(s)
Nanoestructuras , Técnicas Biosensibles , Oro , Calefacción , Resonancia por Plasmón de Superficie
13.
Analyst ; 141(21): 6126-6132, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27704080

RESUMEN

In this study, we demonstrate a compact imaging spectroscopic system for high-throughput detection of biomolecular interactions on plasmonic chips, based on a curved grating as the key element of light diffraction and light focusing. Both the curved grating and the plasmonic chips are fabricated on flexible plastic substrates using a gas-assisted thermal-embossing method. A fiber-coupled broadband light source and a camera are included in the system. Spectral resolution within 1 nm is achieved in sensing environmental index solutions and protein bindings. The detected sensitivities of the plasmonic chip are comparable with a commercial spectrometer. An extra one-dimensional scanning stage enables high-throughput detection of protein binding on a designed plasmonic chip consisting of several nanoslit arrays with different periods. The detected resonance wavelengths match well with the grating equation under an air environment. Wavelength shifts between 1 and 9 nm are detected for antigens of various concentrations binding with antibodies. A simple, mass-productive and cost-effective method has been demonstrated on the imaging spectroscopic system for real-time, label-free, highly sensitive and high-throughput screening of biomolecular interactions.


Asunto(s)
Anticuerpos/análisis , Antígenos/análisis , Análisis Espectral , Ensayos Analíticos de Alto Rendimiento , Unión Proteica , Refractometría
14.
Analyst ; 141(3): 974-80, 2016 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-26670680

RESUMEN

We propose a method and optical design for direct visualization of label-free detection. The system, similar to a tiny spectral analyzer, is composed of a nanostructure-based surface plasmon resonance chip, linear polarizer and 532 nm laser light source. The full-width-at-half-maximum bandwidths of the enhanced surface plasmon resonances are about 5 nm. The distribution of the transmitted light from these arrays comprises a spectral image on the chip. The qualitative and quantitative analyses of the analyte can be conducted by observing the spot shift on the chip. We tested the sensing capability of the chip. The detectable surface mass density with the naked eye is about 0.476 µg cm(-2). In addition, antigen-antibody interaction experiments are conducted to verify the surface binding measurements. A monolayer protein attached on the chip can be directly observed and the concentration levels of the analyte can be estimated with the naked eye. Such plasmonic biochips can benefit sensing applications in point-of-care diagnostics.


Asunto(s)
Nanotecnología/instrumentación , Plata/química , Resonancia por Plasmón de Superficie/instrumentación , Dispositivos Ópticos
15.
Sensors (Basel) ; 16(3): 303, 2016 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-26927128

RESUMEN

This work presents using a tapered fiber tip coated with thin metallic film to detect small particles in water with high sensitivity. When an AC voltage applied to the Ti/Al coated fiber tip and indium tin oxide (ITO) substrate, a gradient electric field at the fiber tip induced attractive/repulsive force to suspended small particles due to the frequency-dependent dielectrophoresis (DEP) effect. Such DEP force greatly enhanced the concentration of the small particles near the tip. The increase of the local concentration also increased the scattering of surface plasmon wave near the fiber tip. Combined both DEP effect and scattering optical near-field, we show the detection limit of the concentration for 1.36 µm polystyrene beads can be down to 1 particle/mL. The detection limit of the Escherichia coli (E. coli) bacteria was 20 CFU/mL. The fiber tip sensor takes advantages of ultrasmall volume, label-free and simple detection system.

16.
Nano Lett ; 15(4): 2746-50, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25798810

RESUMEN

Nanocavities inscribed in a gold thin film are optimized and designed to form a metasurface. We demonstrate both numerically and experimentally the creation of surface plasmon (SP) vortex carrying orbital angular momentum in the metasurface under linearly polarized optical excitation that carries no optical angular momentum. Moreover, depending on the orientation of the exciting linearly polarized light, we show that the metasurface is capable of providing dynamic switching between SP vortex formation or SP subwavelength focusing. The resulting SP intensities are experimentally measured using a near-field scanning optical microscope and are found in excellent quantitative agreements as compared to the numerical results.

17.
Opt Express ; 23(17): 21596-606, 2015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26368138

RESUMEN

We present an accurate method to determine the effective refractive index and thickness of biomolecular layer by using Fano resonance modes in dual-period gold nanogrid arrays. The effective refractive index changes along the x and y directions are simultaneously measured and obtained by using a modified dispersion relation. The thickness of the surface layer is calculated by a three-layer waveguide equation without any fitting parameters. The accuracy of the proposed method is verified by comparing the results with the known coated dielectric layer and self-assembly layers. The applications of this method and nanogrid chips for determining the thickness and surface concentration of antigen/antibody interactions are demonstrated.

18.
Analyst ; 140(12): 4097-104, 2015 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-25891475

RESUMEN

Successful diagnosis and treatment of many diseases depends on the availability of sensitive, reliable and low cost tools for the detection of the biomarkers associated with the diseases. Simple methods that use non-invasive biological samples are especially suitable for the deployment in the clinical environment. In this paper we demonstrate the application of a method that employs a capped gold nanoslit surface plasmon resonance (SPR) sensor and a microfluidic chip for the detection of a urinary nucleic acid biomarker in clinical samples. This method detects low concentrations of the biomarker in a relatively large volume (∼1 mL) of the sample. The method utilizes magnetic nanoparticles (MNPs) for the isolation of target molecules and signal enhancement in conjunction with surface plasmon resonance (SPR) on capped gold nanoslits. The ability of the method to detect urinary miRNA-16-5p in AKI patients was tested and the result was compared with the data obtained with the polymerase chain reaction (PCR). miRNA-16-5p has been found to be a specific and noninvasive biomarker for acute kidney injury (AKI). Our method allows the detection of the biomarker in the urine of AKI patients without amplification and labeling of the target molecules.


Asunto(s)
Oro/química , Dispositivos Laboratorio en un Chip , Nanopartículas del Metal/química , MicroARNs/orina , Resonancia por Plasmón de Superficie/instrumentación , Lesión Renal Aguda/orina , Disparidad de Par Base , Biomarcadores/química , Biomarcadores/orina , Enfermedad Crónica , Humanos , MicroARNs/química , MicroARNs/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico
19.
Opt Express ; 22(16): 19621-32, 2014 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-25321045

RESUMEN

We report a simple method to efficiently improve the detection limit of surface plasmon resonance in periodic metallic nanostructures by using small angle illumination and spectral integration analysis. The large-area gold nanoslit arrays were fabricated by thermal-annealing template-stripping method with a slit width of 60 nm and period of 500 nm. The small angle illumination induced a resonant coupling between surface plasmon mode and substrate mode. It increased ~2.24 times intensity sensitivity at 5.5° incident angle. The small-angle illumination also resulted in multiple resonant peaks. The spectral integration method integrated all changes near the resonant peaks and increased the signal to noise ratio about 5 times as compared to single-wavelength intensity analysis. Combining both small angle and spectral integration, the detection limit was increased to one order of magnitude. The improvement of the detection limit for antigen-antibody interactions was demonstrated.


Asunto(s)
Metales/química , Nanoestructuras/química , Análisis Espectral/métodos , Animales , Anticuerpos/metabolismo , Antígenos/metabolismo , Bovinos , Microfluídica , Refractometría , Albúmina Sérica Bovina/metabolismo , Resonancia por Plasmón de Superficie
20.
Small ; 9(20): 3532-40, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-23606668

RESUMEN

An optofluidic platform for real-time monitoring of live cell secretory activities is constructed via Fano resonance in a gold nanoslit array. Large-area and highly sensitive gold nanoslits with a period of 500 nm are fabricated on polycarbonate films using the thermal-annealed template-stripping method. The coupling between gap plasmon resonance in the slits and surface plasmon polariton Bloch waves forms a sharp Fano resonance with intensity sensitivity greater than 11 000% per refractive index unit. The nanoslit array is integrated with a cell-trapping microfluidic device to monitor dynamic secretion of matrix metalloproteinase 9 (MMP-9) from human acute monocytic leukemia cells in situ. Upon continuous lipopolysaccharide (LPS) stimulation, MMP-9 secretion is detected within 2 h due to ultrahigh surface sensitivity and close proximity of the sensor to the target cells. In addition to the advantage of detecting early cell responses, the sensor also allows interrogation of cell secretion dynamics. Furthermore, the average secretion per cell measured using our system well matches previous reports while it requires orders of magnitude less cells. The optofluidic platform may find applications in fundamental studies of cell functions and diagnostics based on secretion signals.


Asunto(s)
Células/metabolismo , Sistemas de Computación , Oro/química , Microfluídica/métodos , Nanopartículas/química , Óptica y Fotónica/métodos , Línea Celular , Supervivencia Celular , Ensayo de Inmunoadsorción Enzimática , Humanos , Metaloproteinasa 9 de la Matriz/metabolismo , Resonancia por Plasmón de Superficie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA