Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Biochemistry ; 51(3): 807-19, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22242625

RESUMEN

Phosphomannomutase/phosphoglucomutase contributes to the infectivity of Pseudomonas aeruginosa, retains and reorients its intermediate by 180°, and rotates domain 4 to close the deep catalytic cleft. Nuclear magnetic resonance (NMR) spectra of the backbone of wild-type and S108C-inactivated enzymes were assigned to at least 90%. (13)C secondary chemical shifts report excellent agreement of solution and crystallographic structure over the 14 α-helices, C-capping motifs, and 20 of the 22 ß-strands. Major and minor NMR peaks implicate substates affecting 28% of assigned residues. These can be attributed to the phosphorylation state and possibly to conformational interconversions. The S108C substitution of the phosphoryl donor and acceptor slowed transformation of the glucose 1-phosphate substrate by impairing k(cat). Addition of the glucose 1,6-bisphosphate intermediate accelerated this reaction by 2-3 orders of magnitude, somewhat bypassing the defect and apparently relieving substrate inhibition. The S108C mutation perturbs the NMR spectra and electron density map around the catalytic cleft while preserving the secondary structure in solution. Diminished peak heights and faster (15)N relaxation suggest line broadening and millisecond fluctuations within four loops that can contact phosphosugars. (15)N NMR relaxation and peak heights suggest that domain 4 reorients slightly faster in solution than domains 1-3, and with a different principal axis of diffusion. This adds to the crystallographic evidence of domain 4 rotations in the enzyme, which were previously suggested to couple to reorientation of the intermediate, substrate binding, and product release.


Asunto(s)
Fosfotransferasas (Fosfomutasas)/química , Fosfotransferasas (Fosfomutasas)/genética , Dominio Catalítico/genética , Cristalografía por Rayos X , Resonancia Magnética Nuclear Biomolecular , Fosfoglucomutasa/química , Fosfoglucomutasa/genética , Fosforilación/genética , Fosfotransferasas (Fosfomutasas)/metabolismo , Unión Proteica/genética , Transporte de Proteínas/genética , Pseudomonas aeruginosa/enzimología , Especificidad por Sustrato/genética
2.
Sci Rep ; 7(1): 5343, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28706231

RESUMEN

Enzymes sample multiple conformations during their catalytic cycles. Chemical shifts from Nuclear Magnetic Resonance (NMR) are hypersensitive to conformational changes and ensembles in solution. Phosphomannomutase/phosphoglucomutase (PMM/PGM) is a ubiquitous four-domain enzyme that catalyzes phosphoryl transfer across phosphohexose substrates. We compared states the enzyme visits during its catalytic cycle. Collective responses of Pseudomonas PMM/PGM to phosphosugar substrates and inhibitor were assessed using NMR-detected titrations. Affinities were estimated from binding isotherms obtained by principal component analysis (PCA). Relationships among phosphosugar-enzyme associations emerge from PCA comparisons of the titrations. COordiNated Chemical Shifts bEhavior (CONCISE) analysis provides novel discrimination of three ligand-bound states of PMM/PGM harboring a mutation that suppresses activity. Enzyme phosphorylation and phosphosugar binding appear to drive the open dephosphorylated enzyme to the free phosphorylated state, and on toward ligand-closed states. Domain 4 appears central to collective responses to substrate and inhibitor binding. Hydrogen exchange reveals that binding of a substrate analogue enhances folding stability of the domains to a uniform level, establishing a globally unified structure. CONCISE and PCA of NMR spectra have discovered novel states of a well-studied enzyme and appear ready to discriminate other enzyme and ligand binding states.


Asunto(s)
Espectroscopía de Resonancia Magnética , Fosfoglucomutasa/química , Fosfoglucomutasa/metabolismo , Pseudomonas/enzimología , Inhibidores Enzimáticos/metabolismo , Modelos Moleculares , Análisis de Componente Principal , Unión Proteica , Conformación Proteica , Fosfatos de Azúcar/metabolismo
3.
Biomol NMR Assign ; 8(2): 329-33, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23893395

RESUMEN

A domain needed for the catalytic efficiency of an enzyme model of simple processivity and domain-domain interactions has been characterized by NMR. This domain 4 from phosphomannomutase/phosphoglucomutase (PMM/PGM) closes upon glucose phosphate and mannose phosphate ligands in the active site, and can modestly reconstitute activity of enzyme truncated to domains 1-3. This enzyme supports biosynthesis of the saccharide-derived virulence factors (rhamnolipids, lipopolysaccharides, and alginate) of the opportunistic bacterial pathogen Pseudomonas aeruginosa. (1)H, (13)C, and (15)N NMR chemical shift assignments of domain 4 of PMM/PGM suggest preservation and independence of its structure when separated from domains 1-3. The face of domain 4 that packs with domain 3 is perturbed in NMR spectra without disrupting this fold. The perturbed residues overlap both the most highly coevolved positions in the interface and residues lining a cavity at the domain interface.


Asunto(s)
Evolución Molecular , Resonancia Magnética Nuclear Biomolecular , Fosfoglucomutasa/química , Fosfoglucomutasa/metabolismo , Fosfotransferasas (Fosfomutasas)/química , Fosfotransferasas (Fosfomutasas)/metabolismo , Pseudomonas aeruginosa/enzimología , Modelos Moleculares , Estructura Terciaria de Proteína
4.
FEMS Yeast Res ; 8(5): 715-24, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18625027

RESUMEN

Rck2p is a Hog1p-MAP kinase-activated protein kinase and regulates osmotic and oxidative stresses in budding yeast. In this study, we have demonstrated in both Saccharomyces cerevisiae and, the most medically important human fungal pathogen, Candida albicans that deletion of RCK2 renders cells sensitive to rapamycin, the inhibitor of target of rapamycin protein kinase controlling cell growth. The kinase activity of Rck2p does not seem to be required for this rapamycin sensitivity function in both eukaryotic microorganisms. Interestingly, the HOG pathway is not directly involved in cell sensitivity to rapamycin in S. cerevisiae, whereas disruption of CaHOG1 renders cells sensitive to rapamycin in C. albicans. In addition, we have shown that CaRck2p and its kinase activity are required for cell growth in C. albicans.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Sirolimus/farmacología , Secuencia de Aminoácidos , Candida albicans/enzimología , Candida albicans/genética , Candida albicans/crecimiento & desarrollo , Eliminación de Gen , Datos de Secuencia Molecular , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA