Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 725: 150265, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-38901225

RESUMEN

With the substantial increase in the overuse of glucocorticoids (GCs) in clinical medicine, the prevalence of glucocorticoid-induced osteonecrosis of the femoral head (GC-ONFH) continues to rise in recent years. However, the optimal treatment for GC-ONFH remains elusive. Rotating magnetic field (RMF), considered as a non-invasive, safe and effective approach, has been proved to have multiple beneficial biological effects including improving bone diseases. To verify the effects of RMF on GC-ONFH, a lipopolysaccharide (LPS) and methylprednisolone (MPS)-induced invivo rat model, and an MPS-induced invitro cell model have been employed. The results demonstrate that RMF alleviated bone mineral loss and femoral head collapse in GC-ONFH rats. Meanwhile, RMF reduced serum lipid levels, attenuated cystic lesions, raised the expression of anti-apoptotic proteins and osteoprotegerin (OPG), while suppressed the expression of pro-apoptotic proteins and nuclear factor receptor activator-κB (RANK) in GC-ONFH rats. Besides, RMF also facilitated the generation of ALP, attenuated apoptosis and inhibits the expression of pro-apoptotic proteins, facilitated the expression of OPG, and inhibited the expression of RANK in MPS-stimulated MC3T3-E1 cells. Thus, this study indicates that RMF can improve GC-ONFH in rat and cell models, suggesting that RMF have the potential in the treatment of clinical GC-ONFH.


Asunto(s)
Diferenciación Celular , Necrosis de la Cabeza Femoral , Glucocorticoides , Osteoblastos , Ratas Sprague-Dawley , Animales , Osteoblastos/metabolismo , Osteoblastos/efectos de los fármacos , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/patología , Necrosis de la Cabeza Femoral/metabolismo , Necrosis de la Cabeza Femoral/terapia , Ratas , Diferenciación Celular/efectos de los fármacos , Masculino , Campos Magnéticos , Magnetoterapia/métodos , Cabeza Femoral/patología , Cabeza Femoral/metabolismo , Modelos Animales de Enfermedad , Rotación , Ratones
2.
FASEB J ; 37(7): e22985, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37249350

RESUMEN

Osteoporosis is one of the chronic complications of type 1 diabetes with high risk of fracture. The prevention of diabetic osteoporosis is of particular importance. Static magnetic fields (SMFs) exhibit advantages on improvement of diabetic complications. The biological effects and mechanism of SMFs on bone health of type 1 diabetic mice and functions of bone cells under high glucose have not been clearly clarified. In animal experiment, six-week-old male C57BL/6J mice were induced to type 1 diabetes and exposed to SMF of 0.4-0.7 T for 4 h/day lasting for 6 weeks. Bone mass, biomechanical strength, microarchitecture and metabolism were determined by DXA, three-point bending assay, micro-CT, histochemical and biochemical methods. Exposure to SMF increased BMD and BMC of femur, improved biomechanical strength with higher ultimate stress, stiffness and elastic modulus, and ameliorated the impaired bone microarchitecture in type 1 diabetic mice by decreasing Tb.Pf, Ct.Po and increasing Ct.Th. SMF enhanced bone turnover by increasing the level of markers for bone formation (OCN and Collagen I) as well as bone resorption (CTSK and NFAT2). In cellular experiment, MC3T3-E1 cells or primary osteoblasts and RAW264.7 cells were cultured in 25 mM high glucose-stimulated diabetic marrow microenvironment under differentiation induction and exposed to SMF. SMF promoted osteogenesis with higher ALP level and mineralization deposition in osteoblasts, and it also enhanced osteoclastogenesis with higher TRAP activity and bone resorption in osteoclasts under high glucose condition. Further, SMF increased iron content with higher FTH1 expression and regulated the redox level through activating HO-1/Nrf2 in tibial tissues, and lowered hepatic iron accumulation by BMP6-mediated regulation of hepcidin and lipid peroxidation in mice with type 1 diabetes. Thus, SMF may act as a potential therapy for improving bone health in type 1 diabetes with regulation on iron homeostasis metabolism and redox status.


Asunto(s)
Resorción Ósea , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Osteoporosis , Ratones , Masculino , Animales , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Experimental/terapia , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Osteogénesis , Hierro/metabolismo , Oxidación-Reducción , Campos Magnéticos , Glucosa
3.
Small ; 19(37): e2301267, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37144442

RESUMEN

Fe-doped Ni (oxy)hydroxide shows intriguing activity toward oxygen evolution reaction (OER) in alkaline solution, yet it remains challenging to further boost its performance. In this work, a ferric/molybdate (Fe3+ /MoO4 2- ) co-doping strategy is reported to promote the OER activity of Ni oxyhydroxide. The reinforced Fe/Mo-doped Ni oxyhydroxide catalyst supported by nickel foam (p-NiFeMo/NF) is synthesized via a unique oxygen plasma etching-electrochemical doping route, in which precursor Ni(OH)2 nanosheets are first etched by oxygen plasma to form defect-rich amorphous nanosheets, followed by electrochemical cycling to trigger simultaneously Fe3+ /MoO4 2- co-doping and phase transition. This p-NiFeMo/NF catalyst requires an overpotential of only 274 mV to reach 100 mA cm-2 in alkaline media, exhibiting significantly enhanced OER activity compared to NiFe layered double hydroxide (LDH) catalyst and other analogs. Its activity does not fade even after 72 h uninterrupted operation. In situ Raman analysis reveals that the intercalation of MoO4 2- is able to prevent the over-oxidation of NiOOH matrix from ß to γ phase, thus keeping the Fe-doped NiOOH at the most active state.

4.
Acta Pharmacol Sin ; 44(1): 8-18, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35817809

RESUMEN

O-GlcNAcylation is a post-translational modification of protein in response to genetic variations or environmental factors, which is controlled by two highly conserved enzymes, i.e. O-GlcNAc transferase (OGT) and protein O-GlcNAcase (OGA). Protein O-GlcNAcylation mainly occurs in the cytoplasm, nucleus, and mitochondrion, and it is ubiquitously implicated in the development of cardiovascular disease (CVD). Alterations of O-GlcNAcylation could cause massive metabolic imbalance and affect cardiovascular function, but the role of O-GlcNAcylation in CVD remains controversial. That is, acutely increased O-GlcNAcylation is an adaptive heart response, which temporarily protects cardiac function. While it is harmful to cardiomyocytes if O-GlcNAcylation levels remain high in chronic conditions or in the long run. The underlying mechanisms include regulation of transcription, energy metabolism, and other signal transduction reactions induced by O-GlcNAcylation. In this review, we will focus on the interactions between protein O-GlcNAcylation and CVD, and discuss the potential molecular mechanisms that may be able to pave a new avenue for the treatment of cardiovascular events.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/metabolismo , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/metabolismo , Procesamiento Proteico-Postraduccional , Corazón , Mitocondrias/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo
5.
Sensors (Basel) ; 23(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36850727

RESUMEN

Unsupervised band selection is an essential task to search for representative bands in hyperspectral dimension reduction. Most of existing studies utilize the inherent attribute of hyperspectral image (HSI) and acquire single optimal band subset while ignoring the diversity of subsets. Moreover, the ordered property in HSI is expected to be focused in order to avoid choosing redundant bands. In this paper, we proposed an unsupervised band selection method based on the multimodal evolutionary algorithm and subspace decomposition to alleviate the problems. To explore the diversity of band subsets, the multimodal evolutionary algorithm is first employed in spectral subspace decomposition to seek out multiple global or local solutions. Meanwhile, in view of ordered property, we concentrate more on increasing the difference between neighbor band subspaces. Furthermore, to utilize the obtained multiple diverse band subsets, an integrated utilization strategy is adopted to improve the predicted performance. Experimental results on three popular hyperspectral remote sensing datasets and one collected composition prediction dataset show the effectiveness of the proposed method, and the superiority over state-of-the-art methods on predicted accuracy.

6.
Eur Radiol ; 29(11): 6029-6037, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31115627

RESUMEN

OBJECTIVES: We aimed to evaluate the biological effects of high static magnetic field (HiSMF, 2-12 Tesla [T]) exposure on mice in a stable and effective breeding environment in the chamber of a superconducting magnet. METHODS: C57BL/6 mice were bred in the geomagnetic field and HiSMF with different magnetic field strengths (2-4 T, 6-8 T, and 10-12 T) for 28 days. The body weight, blood indices, organ coefficients, and histomorphology of major organs were analyzed. RESULTS: The results showed that the HiSMF had no significant effect on the body weight, organ coefficients, or histomorphology of major organs in mice. The HiSMF had no effect on most routine blood and biochemical indices, but the value of the mean corpuscular hemoglobin (MCH) was increased in the 2-4 T group compared with that of the other groups, and the uric acid level (UA) was decreased in the three HiSMF groups compared with that of the control group. CONCLUSION: The C57BL/6 mice were not affected when they were exposed to different HiSMF environments for 28 days. KEY POINTS: • No physiological problems were observed in mice with long-term whole-body exposure to HiSMF.


Asunto(s)
Campos Magnéticos , Imagen por Resonancia Magnética/métodos , Exposición a la Radiación , Animales , Peso Corporal , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales
7.
Geroscience ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904930

RESUMEN

Neuroinflammation, triggered by aberrantly activated microglia, is widely recognized as a key contributor to the initiation and progression of Alzheimer's disease (AD). Microglial activation in the central nervous system (CNS) can be classified into two distinct phenotypes: the pro-inflammatory M1 phenotype and the anti-inflammatory M2 phenotype. In this study, we investigated the effects of a non-invasive rotating magnetic field (RMF) (0.2T, 4Hz) on cognitive and memory impairments in a sporadic AD model of female Kunming mice induced by AlCl3 and D-gal. Our findings revealed significant improvements in cognitive and memory impairments following RMF treatment. Furthermore, RMF treatment led to reduced amyloid-beta (Aß) deposition, mitigated damage to hippocampal morphology, prevented synaptic and neuronal loss, and alleviated cell apoptosis in the hippocampus and cortex of AD mice. Notably, RMF treatment ameliorated neuroinflammation, facilitated the transition of microglial polarization from M1 to M2, and inhibited the NF-кB/MAPK pathway. Additionally, RMF treatment resulted in reduced aluminum deposition in the brains of AD mice. In cellular experiments, RMF promoted the M1-M2 polarization transition and enhanced amyloid phagocytosis in cultured BV2 cells while inhibiting the TLR4/NF-кB/MAPK pathway. Collectively, these results demonstrate that RMF improves memory and cognitive impairments in a sporadic AD model, potentially by promoting the M1 to M2 transition of microglial polarization through inhibition of the NF-кB/MAPK signaling pathway. These findings suggest the promising therapeutic applications of RMF in the clinical treatment of AD.

8.
Mol Immunol ; 172: 23-37, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38865801

RESUMEN

Ulcerative colitis (UC) is a prevalent inflammatory disorder that emerges in the colon and rectum, exhibiting a rising global prevalence and seriously impacting the physical and mental health of patients. Significant challenges remain in UC treatment, highlighting the need for safe and effective long-term therapeutic approaches. Heralded as a promising physical treatment, the rotating magnetic field (RMF) demonstrates safety, stability, manageability, and efficiency. This study delves into RMF's potential in mitigating DSS-induced UC in mice, assessing disease activity indices (DAI) and pathological alterations such as daily body weight, fecal occult blood, colon length, and morphological changes. Besides, several indexes have been detected, including serum concentrations of pro-inflammatory cytokines (IL6, IL-17A, TNF-α, IFN-γ) and anti-inflammatory cytokines (TGF-ß, IL-4, IL-10), the ratio of splenic CD3+, CD4+, and CD8+ T cells, the rate of apoptotic colonic cells, the expression of colonic inflammatory and tight junction-associated proteins. The results showed that RMF had beneficial effects on the decrease of intestinal permeability, the restoration of tight junctions, and the mitigation of mitochondrial respiratory complexes (MRCs) by attenuating inflammatory dysfunction in colons of DSS-induced UC model of mice. In conclusion, this study demonstrates that RMF attenuates colonic inflammation, enhances colonic tight junction, and alleviates MRCs impairment by regulating the equilibrium of pro-inflammatory and anti-inflammatory cytokines in UC mice, suggesting the potential application of RMF in the clinical treatment of UC.

9.
Hypertension ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989583

RESUMEN

BACKGROUND: STIM1 (stromal interaction molecule 1) regulates store-operated calcium entry and is involved in pulmonary artery vasoconstriction and pulmonary artery smooth muscle cell proliferation, leading to pulmonary arterial hypertension (PAH). METHODS: Bioinformatics analysis and a 2-stage matched case-control study were conducted to screen for noncoding variants that may potentially affect STIM1 transcriptional regulation in 242 patients with idiopathic PAH and 414 healthy controls. Luciferase reporter assay, real-time quantitative polymerase chain reaction, western blot, 5-ethynyl-2'-deoxyuridine (EdU) assay, and intracellular Ca2+ measurement were performed to study the mechanistic roles of those STIM1 noncoding variants in PAH. RESULTS: Five noncoding variants (rs3794050, rs7934581, rs3750996, rs1561876, and rs3750994) were identified and genotyped using Sanger sequencing. Rs3794050, rs7934581, and rs1561876 were associated with idiopathic PAH (recessive model, all P<0.05). Bioinformatics analysis showed that these 3 noncoding variants possibly affect the enhancer function of STIM1 or the microRNA (miRNA) binding to STIM1. Functional validation performed in HEK293 and pulmonary artery smooth muscle cells demonstrated that the noncoding variant rs1561876-G (STIM1 mutant) had significantly stronger transcriptional activity than the wild-type counterpart, rs1561876-A, by affecting the transcriptional regulatory function of both hsa-miRNA-3140-5p and hsa-miRNA-4766-5p. rs1561876-G enhanced intracellular Ca2+ signaling in human pulmonary artery smooth muscle cells secondary to calcium-sensing receptor activation and promoted proliferation of pulmonary artery smooth muscle cells under both normoxia and hypoxia conditions, suggesting a possible contribution to PAH development. CONCLUSIONS: The potential clinical implications of the 3 noncoding variants of STIM1, rs3794050, rs7934581, and rs1561876, are 2-fold, as they may help predict the risk and prognosis of idiopathic PAH and guide investigations on novel therapeutic pathway(s).

10.
Prog Biophys Mol Biol ; 178: 103-115, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574882

RESUMEN

As one of the common variable magnetic fields, rotating magnetic field (RMF) plays a crucial role in modern human society. The biological effects of RMF have been studied for over half a century, and various results have been discovered. Several reports have shown that RMF can inhibit the growth of various types of cancer cells in vitro and in vivo and improve clinical symptoms of patients with advanced cancer. It can also affect endogenous opioid systems and rhythm in central nerve systems, promote nerve regeneration and regulate neural electrophysiological activity in the human brain. In addition, RMF can influence the growth and metabolic activity of some microorganisms, alter the properties of fermentation products, inhibit the growth of some harmful bacteria and increase the susceptibility of antibiotic-resistant bacteria to common antibiotics. Besides, there are other biological effects of RMF on blood, bone, prenatal exposure, enzyme activity, immune function, aging, parasite, endocrine, wound healing, and plants. These discoveries demonstrate that RMF have great application potential in health care, medical treatment, fermentation engineering, and even agriculture. However, in some cases like pregnancy, RMF exposure may need to be avoided. Finally, the specific mechanisms of RMF's biological effects remain unrevealed, despite various hypotheses and theories. It does not prevent us from using it for our good.


Asunto(s)
Envejecimiento , Huesos , Humanos , Rotación , Antibacterianos , Campos Magnéticos
11.
Lab Chip ; 23(10): 2477-2486, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37097479

RESUMEN

Oblique-incidence reflectivity difference (OIRD) is a compelling technique for real-time, label-free and non-destructive detection of antibody microarray chips, but its sensitivity needs essential improvement for clinical diagnosis. In this study, we report an innovative high-performance OIRD microarray by using poly[oligo(ethylene glycol) methacrylate-co-glycidyl methacrylate] (POEGMA-co-GMA) brush grafted fluorine-doped tin oxide (FTO) as the chip substrate. The polymer brush enhances the interfacial binding reaction efficiency of targets from the complicated sample matrix due to its high antibody loading and excellent anti-fouling merits; the FTO-polymer brush layered structure, on the other hand, excites the interference enhancement effect of OIRD to achieve enhanced intrinsic optical sensitivity. Synergistically, the sensitivity of this chip is significantly improved compared to rival chips, achieving a limit of detection (LOD) as low as 25 ng mL-1 for the model target C-reactive protein (CRP) in 10% human serum. This work explores the tremendous influence of the chip interfacial structure on the OIRD sensitivity and proposes a rational interfacial engineering strategy to boost the performance of the label-free OIRD based microarray and other bio-devices.


Asunto(s)
Flúor , Polímeros , Humanos , Polímeros/química , Anticuerpos , Análisis por Micromatrices/métodos
12.
Cardiorenal Med ; 13(1): 248-258, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37586345

RESUMEN

INTRODUCTION: Although maintenance hemodialysis (MHD) in end-stage renal disease (ESRD) appears to induce some risk factors and strengthen cardiac function, the morbidity of ESRD patients receiving hemodialysis remains high. This study aimed to identify left ventricular (LV) structural and functional abnormalities in ESRD patients on MHD using three-dimensional speckle-tracking imaging (3D-STI). METHODS: Eighty-five ESRD patients with normal LV ejection fraction (LVEF >50%) participated in this study, including 55 MHD patients comprising the chronic kidney disease (CKD) V-D group and 30 nondialysis patients comprising the CKD V-ND group. Thirty age- and sex-matched control participants who had normal kidney function were enrolled as the N group. Conventional echocardiography and 3D-STI were conducted, and global longitudinal strain (GLS), global circumferential strain (GCS), global area strain (GAS), and global radial strain (GRS) values were measured. RESULTS: No substantial differences in two-dimensional LVEF were observed among the three groups, and LV hypertrophy was the most common abnormality in patients with ESRD, irrespective of whether they had received or not received MHD. There were no significant differences in the 3D LV mass index between the CKD V-ND and N groups (p > 0.05). Conversely, the 3D LV mass index was considerably higher in the CKD V-D group than in both the N and CKD V-ND groups. The GLS, GAS, and GRS values were significantly lower in the CKD V-ND group than in the N group (p < 0.05). Furthermore, the CKD V-D group had significantly lower GLS, GCS, GAS, and GRS values than the N and CKD V-ND groups (p < 0.05). The interventricular septal thickness and E/e' ratio were independently associated with LV strain values in all patients with ESRD. CONCLUSIONS: MHD can exacerbate LV deformation and dysfunction in ESRD patients with preserved LVEF, and 3D-STI can be potentially useful for detecting these asymptomatic preclinical abnormalities.


Asunto(s)
Ecocardiografía Tridimensional , Fallo Renal Crónico , Disfunción Ventricular Izquierda , Humanos , Función Ventricular Izquierda , Disfunción Ventricular Izquierda/complicaciones , Disfunción Ventricular Izquierda/diagnóstico por imagen , Ecocardiografía Tridimensional/efectos adversos , Ecocardiografía Tridimensional/métodos , Diálisis Renal/efectos adversos , Fallo Renal Crónico/complicaciones , Fallo Renal Crónico/terapia
13.
Foods ; 12(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38002210

RESUMEN

Combining deep learning and hyperspectral imaging (HSI) has proven to be an effective approach in the quality control of medicinal and edible plants. Nonetheless, hyperspectral data contains redundant information and highly correlated characteristic bands, which can adversely impact sample identification. To address this issue, we proposed an enhanced one-dimensional convolutional neural network (1DCNN) with an attention mechanism. Given an intermediate feature map, two attention modules are constructed along two separate dimensions, channel and spectral, and then combined to enhance relevant features and to suppress irrelevant ones. Validated by Fritillaria datasets, the results demonstrate that an attention-enhanced 1DCNN model outperforms several machine learning algorithms and shows consistent improvements over a vanilla 1DCNN. Notably under VNIR and SWIR lenses, the model obtained 98.97% and 99.35% for binary classification between Fritillariae Cirrhosae Bulbus (FCB) and other non-FCB species, respectively. Additionally, it still achieved an extraordinary accuracy of 97.64% and 98.39% for eight-category classification among Fritillaria species. This study demonstrated the application of HSI with artificial intelligence can serve as a reliable, efficient, and non-destructive quality control method for authenticating Fritillaria species. Moreover, our findings also illustrated the great potential of the attention mechanism in enhancing the performance of the vanilla 1DCNN method, providing reference for other HSI-related quality controls of plants with medicinal and edible uses.

14.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166719, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37116230

RESUMEN

Static magnetic fields (SMFs) exhibit significant effect on health care. However, the effect of SMF on hepatic metabolism and function in obesity and diabetes are still unknown. Liver is not only the main site for glucolipid metabolism but also the core part for iron metabolism regulation. Dysregulations of iron metabolism and redox status are risk factors for the development of hepatic injury and affect glucolipid metabolism in obesity and diabetes. Mice of HFD-induced obesity and HFD/streptozocin-induced diabetes were exposed to a moderate-intensity SMF (0.4-0.7 T, direction: upward, 4 h/day, 8 weeks). Results showed that SMF attenuated hepatic damage by decreasing inflammation and fibrosis in obese and diabetic mice. SMF had no effects on improving glucose/insulin tolerance but regulated proteins (GLUT1 and GLUT4) and genes (G6pc, Pdk4, Gys2 and Pkl) participating in glucose metabolism with phosphorylation of Akt/AMPK/GSK3ß. SMF also reduced lipid droplets accumulation through decreasing Plin2 and Plin5 and regulated lipid metabolism with elevated hepatic expressions of PPARγ and C/EBPα in obese mice. In addition, SMF decreased hepatic iron deposition with lower FTH1 expression and modulated systematic iron homeostasis via BMP6-mediated regulation of hepcidin. Moreover, SMF balanced hepatic redox status with regulation on mitochondrial function and MAPKs/Nrf2/HO-1 pathway. Finally, we found that SMF activated hepatic autophagy and enhanced lipophagy by upregulating PNPLA2 expression in obese and diabetic mice. Our results demonstrated that SMF significantly ameliorated the development of hepatic injury in obese and diabetic mice by inhibiting inflammatory level, improving glycolipid metabolism, regulating iron metabolism, balancing redox level and activating autophagy.


Asunto(s)
Diabetes Mellitus Experimental , Ratones , Animales , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Hígado/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Campos Magnéticos , Hierro/metabolismo
15.
Cells ; 12(7)2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-37048045

RESUMEN

Ankylosing spondylitis (AS) is clinically characterized by bone fusion that is induced by the pathological formation of extra bone. Unfortunately, the fundamental mechanism and related therapies remain unclear. The loss of SHP-2 (encoded by Ptpn11) in CD4-Cre;Ptpn11f/f mice resulted in the induction of AS-like pathological characteristics, including spontaneous cartilage and bone lesions, kyphosis, and arthritis. Hence, this mouse was utilized as an AS model in this study. As one of the basic physical fields, the magnetic field (MF) has been proven to be an effective treatment method for articular cartilage degeneration. In this study, the effects of a rotating magnetic field (RMF; 0.2 T, 4 Hz) on an AS-like mouse model were investigated. The RMF treatment (2 h/d, 0.2 T, 4 Hz) was performed on AS mice from two months after birth until the day before sampling. The murine specimens were subjected to transcriptomics, immunomics, and metabolomics analyses, combined with molecular and pathological experiments. The results demonstrated that the mitigation of inflammatory deterioration resulted in an increase in functional osteogenesis and a decrease in dysfunctional osteolysis due to the maintenance of bone homeostasis via the RANKL/RANK/OPG signaling pathway. Additionally, by regulating the ratio of CD4+ and CD8+ T-cells, RMF treatment rebalanced the immune microenvironment in skeletal tissue. It has been observed that RMF interventions have the potential to alleviate AS, including by decreasing pathogenicity and preventing disease initiation. Consequently, RMF, as a moderately physical therapeutic strategy, could be considered to alleviate the degradation of cartilage and bone tissue in AS and as a potential option to halt the progression of AS.


Asunto(s)
Cartílago Articular , Espondilitis Anquilosante , Ratones , Animales , Espondilitis Anquilosante/terapia , Condrocitos/patología , Osteocitos , Cartílago Articular/patología , Campos Magnéticos
16.
Front Plant Sci ; 14: 1271320, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954990

RESUMEN

Accurate assessment of isoflavone and starch content in Puerariae Thomsonii Radix (PTR) is crucial for ensuring its quality. However, conventional measurement methods often suffer from time-consuming and labor-intensive procedures. In this study, we propose an innovative and efficient approach that harnesses hyperspectral imaging (HSI) technology and deep learning (DL) to predict the content of isoflavones (puerarin, puerarin apioside, daidzin, daidzein) and starch in PTR. Specifically, we develop a one-dimensional convolutional neural network (1DCNN) model and compare its predictive performance with traditional methods, including partial least squares regression (PLSR), support vector regression (SVR), and CatBoost. To optimize the prediction process, we employ various spectral preprocessing techniques and wavelength selection algorithms. Experimental results unequivocally demonstrate the superior performance of the DL model, achieving exceptional performance with mean coefficient of determination (R2) values surpassing 0.9 for all components. This research underscores the potential of integrating HSI technology with DL methods, thereby establishing the feasibility of HSI as an efficient and non-destructive tool for predicting the content of isoflavones and starch in PTR. Moreover, this methodology holds great promise for enhancing efficiency in quality control within the food industry.

17.
Hypertension ; 80(9): 1929-1939, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37449418

RESUMEN

BACKGROUND: The pathological mechanism of chronic thromboembolic pulmonary hypertension (CTEPH) is not fully understood, and inflammation has been reported to be one of its etiological factors. IgG regulates systemic inflammatory homeostasis, primarily through its N-glycans. Little is known about IgG N-glycosylation in CTEPH. We aimed to map the IgG N-glycome of CTEPH to provide new insights into its pathogenesis and discover novel markers and therapies. METHODS: We characterized the plasma IgG N-glycome of patients with CTEPH in a discovery cohort and validated our results in an independent validation cohort using matrix-assisted laser desorption/ionization time of flight mass spectrometry. Thereafter, we correlated IgG N-glycans with clinical parameters and circulating inflammatory cytokines in patients with CTEPH. Furthermore, we determined IgG N-glycan quantitative trait loci in CTEPH to reveal partial mechanisms underlying glycan changes. RESULTS: Decreased IgG galactosylation representing a proinflammatory phenotype was found in CTEPH. The distribution of IgG galactosylation showed a strong association with NT-proBNP (N-terminal pro-B-type natriuretic peptide) in CTEPH. In line with the glycomic findings, IgG pro-/anti-inflammatory N-glycans correlated well with a series of inflammatory markers and gene loci that have been reported to be involved in the regulation of these glycans or inflammatory immune responses. CONCLUSIONS: This is the first study to reveal the full signature of the IgG N-glycome of a proinflammatory phenotype and the genes involved in its regulation in CTEPH. Plasma IgG galactosylation may be useful for evaluating the inflammatory state in patients with CTEPH; however, this requires further validation. This study improves our understanding of the mechanisms underlying CTEPH inflammation from the perspective of glycomics.


Asunto(s)
Hipertensión Pulmonar , Humanos , Hipertensión Pulmonar/etiología , Fenotipo , Inflamación , Inmunoglobulina G/genética , Polisacáridos
18.
Animal Model Exp Med ; 5(3): 207-216, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35333455

RESUMEN

Pulmonary hypertension (PH) is clinically divided into 5 major types, characterized by elevation in pulmonary arterial pressure (PAP) and pulmonary vascular resistance (PVR), finally leading to right heart failure and death. The pathogenesis of this arteriopathy remains unclear, leaving it impossible to target pulmonary vascular remodeling and reverse the deterioration of right ventricular (RV) function. Different animal models have been designed to reflect the complex mechanistic origins and pathology of PH, roughly divided into 4 categories according to the modeling methods: non-invasive models in vivo, invasive models in vivo, gene editing models, and multi-means joint modeling. Though each model shares some molecular and pathological changes with different classes of human PH, in most cases the molecular etiology of human PH is poorly known. The appropriate use of classic and novel PH animal models is essential for the hunt of molecular targets to reverse severe phenotypes.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión Pulmonar , Animales , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/complicaciones , Hipertensión Pulmonar/etiología , Resistencia Vascular , Función Ventricular Derecha
19.
Hypertension ; 79(7): 1348-1360, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35477244

RESUMEN

BACKGROUND: Pulmonary arterial hypertension is an incurable disease, in which the extracellular CaSR (calcium sensing receptor) is mechanistically important. This study was aimed to genetically link the CaSR gene and function to the disease severity. METHODS: Sanger sequencing, Sugen/hypoxia pulmonary arterial hypertension rat model, CaSR mutated rat, transcriptional reporter assay and measurement of CaSR activity were used. RESULTS: Sanger sequencing identified a significant association between the variant rs1042636(A>G), located in CaSR exon 7, and idiopathic pulmonary arterial hypertension (IPAH) formation in patients. The frequency of 2968G homozygotes was higher in patients with IPAH compared with healthy individuals (23.6% versus 17.5%; P=0.001, OR=1.864), and the minor alleles of rs6776158, rs1048213, and rs9883099, located in CaSR promoter, raised the IPAH odds ratio to 2.173. Patients with IPAH carrying heterozygotes or homozygotes genotype of rs1042636 showed markedly higher pulmonary artery pressure and reduced survival compared with individuals carrying the wild-type allele. The minor alleles of rs6776158, rs1048213, and rs9883099 increased CaSR expression in reporter assay. In Sugen/hypoxia pulmonary arterial hypertension rats, the point mutation replicating rs1042636 found in IPAH exacerbated pulmonary arterial hypertension severity by promoting the overexpression and the enhanced activity of CaSR. CONCLUSIONS: Our functional genomic analysis thus indicates that the CaSR minor alleles of rs1042636, rs6776158, rs1048213, and rs9883099 contribute to the development and severity of IPAH. These findings may benefit clinical prognosis and treatment for IPAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Receptores Sensibles al Calcio , Animales , Calcio/metabolismo , Hipertensión Pulmonar Primaria Familiar/tratamiento farmacológico , Hipertensión Pulmonar Primaria Familiar/genética , Hipertensión Pulmonar Primaria Familiar/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipoxia/metabolismo , Arteria Pulmonar/metabolismo , Ratas , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo
20.
Front Oncol ; 12: 925495, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276155

RESUMEN

The resistant cells that proliferate after radiotherapy and chemotherapy are primarily tumor stem cells with high stem marker expression, and their presence is the primary cause of tumor dispersion. The Wnt signaling receptor Frizzled family receptor 7 (FZD7) is linked to the maintenance of stem cell features as well as cancer progression. Frizzled-7 (FZD7), a key receptor for Wnt/-catenin signaling, is overexpressed in TNBC, suggesting that it could be a viable target for cancer therapy. We employed bioinformatics to find the best-scoring peptide, chemically synthesized FZD7 epitope antigen, and binding toll-like receptor 7 agonists (T7). Under GMP conditions, peptides for vaccines were produced and purified (>95%). In vivo and vitro tests were used to assess tumor cell inhibition. In vitro, the FZD7-T7 vaccination can boost the maturity of BMDC cells considerably. In mice, the FZD7 - T7 vaccine elicited the greatest immunological response. Significant tumor development inhibition was seen in BALB/c mice treated with FZD7 - T7 in prevention experiments (P < 0.01). Multiple cytokines that promote cellular immune responses, such as interferon (IFN)-γ (P < 0.05), interleukin (IL)-12 (P < 0.05), and IL-2 (P < 0.01), were shown to be considerably elevated in mice inoculated with FZD7- T7. Furthermore, we evaluated safety concerns in terms of vaccine composition to aid in the creation of successful next-generation vaccines. In conclusion, the FZD7-T7 vaccine can activate the immune response in vivo and in vitro, and play a role in tumor suppression. Our findings reveal a unique tumor-suppressive role for the FZD7 peptide in TNBC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA