Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38780441

RESUMEN

Obesity in adolescence is increasing in frequency and is associated with elevated proinflammatory cytokines and chronic pain in a sex-dependent manner. Dietary probiotics may mitigate these detrimental effects of obesity. Using a Long-Evans adolescent and adult rat model of overweight (high fat diet - 45% kcal from fat from weaning; HFD), we determined the effect of a single strain dietary probiotic (L. plantarum 299v [Lp299v] from weaning) on the theoretically increased neuropathic injury-induced pain phenotype and inflammatory cytokines. We found that although HFD increased fat mass, it did not markedly affect pain phenotype, particularly in adolescence, but there were subtle differences in pain in adult male vs. female rats. The combination of HFD and Lp299v augmented the increase in leptin in adolescent females. There were many non-interacting, main effects of age, diet and probiotic on an array of cytokines and adipokines with adults being higher than adolescents, HFD higher than the control diet, and a decrease with probiotic compared to placebo. Of particular interest were the probiotic-induced increases in IL12p70 in female adolescents on a HFD. We conclude that a more striking pain phenotype could require a higher and longer duration caloric diet or different etiology of pain. A major strength of our study was that a single strain probiotic had a wide range of inhibiting effects on most pro-inflammatory cytokines. The positive effect of probiotic on leptin in female adolescent rats is intriguing and worthy of exploration.

2.
Photochem Photobiol Sci ; 23(2): 355-364, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38277065

RESUMEN

We have previously established that 670 nm energy induces relaxation of blood vessels via an endothelium derived S-nitrosothiol (RSNO) suggested to be embedded in vesicles. Here, we confirm that red light facilitates the exocytosis of this vasodilator from cultured endothelial cells and increases ex vivo blood vessel diameter. Ex vivo pressurized and pre-constricted facial arteries from C57Bl6/J mice relaxed 14.7% of maximum diameter when immersed in the medium removed from red-light exposed Bovine Aortic Endothelial Cells. In parallel experiments, 0.49 nM RSNO equivalent species was measured in the medium over the irradiated cells vs dark control. Electron microscopy of light exposed endothelium revealed significant increases in the size of the Multi Vesicular Body (MVB), a regulator of exosome trafficking, while RSNO accumulated in the MVBs as detected with immunogold labeling electron microscopy (1.8-fold of control). Moreover, red light enhanced the presence of F-actin related stress fibers (necessary for exocytosis), and the endothelial specific marker VE-cadherin levels suggesting an endothelial origin of the extracellular vesicles. Flow cytometry coupled with DAF staining, an indirect sensor of nitric oxide (NO), indicated significant amounts of NO within the extracellular vesicles (1.4-fold increase relative to dark control). Therefore, we further define the mechanism on the 670 nm light mediated traffic of endothelial vasodilatory vesicles and plan to leverage this insight into the delivery of red-light therapies.


Asunto(s)
Células Endoteliales , Luz Roja , Animales , Bovinos , Ratones , Modelos Animales de Enfermedad , Óxido Nítrico , Células Cultivadas , Exocitosis , Endotelio
3.
Arch Biochem Biophys ; 649: 47-52, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29752896

RESUMEN

Far red/near infrared (R/NIR) energy is a novel therapy, but its mechanism of action is poorly characterized. Cytochrome c oxidase (Cco) of the mitochondrial electron transport chain is considered the primary photoacceptor for R/NIR to photolyze a putative heme nitrosyl in Cco to liberate free nitric oxide (NO). We previously observed R/NIR light directly liberates NO from nitrosylated hemoglobin and myoglobin, and recently suggested S-nitrosothiols (RSNO) and dinitrosyl iron complexes (DNIC) may be primary sources of R/NIR-mediated NO. Here we indicate R/NIR light exposure induces wavelength dependent dilation of murine facial artery, with longer wavelengths (740, and 830 nm) exhibiting reduced potency when compared to 670 nm. R/NIR also stimulated NO release from pure solutions of low molecular weight RSNO (GSNO and SNAP) and glutathione dinitrosyl iron complex (GSH-DNIC) in a power- and wavelength-dependent manner, with the greatest effect at 670 nm. NO release from SNAP using 670 was nearly ten-fold more than GSNO or GSH-DNIC, with no substantial difference in NO production at 740 nm and 830 nm. Thermal effects of irradiation on vasodilation or NO release from S-nitrosothiols and DNIC was minimal. Our results suggest 670 nm is the optimal wavelength for R/NIR treatment of certain vascular-related diseases.


Asunto(s)
Arterias/efectos de los fármacos , Hierro/farmacología , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico/metabolismo , Óxidos de Nitrógeno/farmacología , S-Nitrosotioles/farmacología , Vasodilatación/efectos de los fármacos , Animales , Arterias/efectos de la radiación , Rayos Infrarrojos , Luz , Ratones Endogámicos C57BL , Vasodilatación/efectos de la radiación
4.
Am J Physiol Heart Circ Physiol ; 309(7): H1130-40, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26254329

RESUMEN

Mechanisms of restenosis in type 2 diabetes mellitus (T2DM) are incompletely elucidated, but advanced glycation end-product (AGE)-induced vascular remodeling likely contributes. We tested the hypothesis that AGE-related collagen cross-linking (ARCC) leads to increased downstream vascular resistance and altered in-stent hemodynamics, thereby promoting neointimal hyperplasia (NH) in T2DM. We proposed that decreasing ARCC with ALT-711 (Alagebrium) would mitigate this response. Abdominal aortic stents were implanted in Zucker lean (ZL), obese (ZO), and diabetic (ZD) rats. Blood flow, vessel diameter, and wall shear stress (WSS) were calculated after 21 days, and NH was quantified. Arterial segments (aorta, carotid, iliac, femoral, and arterioles) were harvested to detect ARCC and protein expression, including transforming growth factor-ß (TGF-ß) and receptor for AGEs (RAGE). Downstream resistance was elevated (60%), whereas flow and WSS were significantly decreased (44% and 56%) in ZD vs. ZL rats. NH was increased in ZO but not ZD rats. ALT-711 reduced ARCC and resistance (46%) in ZD rats while decreasing NH and producing similar in-stent WSS across groups. No consistent differences in RAGE or TGF-ß expression were observed in arterial segments. ALT-711 modified lectin-type oxidized LDL receptor 1 but not RAGE expression by cells on decellularized matrices. In conclusion, ALT-711 decreased ARCC, increased in-stent flow rate, and reduced NH in ZO and ZD rats through RAGE-independent pathways. The study supports an important role for AGE-induced remodeling within and downstream of stent implantation to promote enhanced NH in T2DM.


Asunto(s)
Aorta Abdominal/efectos de los fármacos , Diabetes Mellitus/metabolismo , Oclusión de Injerto Vascular/metabolismo , Neointima/metabolismo , Obesidad/metabolismo , Stents , Estrés Mecánico , Tiazoles/farmacología , Resistencia Vascular/efectos de los fármacos , Animales , Aorta Abdominal/metabolismo , Colágeno/efectos de los fármacos , Colágeno/metabolismo , Productos Finales de Glicación Avanzada/efectos de los fármacos , Productos Finales de Glicación Avanzada/metabolismo , Masculino , Neointima/prevención & control , Ratas , Ratas Zucker , Receptor para Productos Finales de Glicación Avanzada/efectos de los fármacos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Resistencia al Corte , Factor de Crecimiento Transformador beta/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo
5.
Anesthesiology ; 123(3): 582-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26192027

RESUMEN

BACKGROUND: The authors investigated the hypothesis that isoflurane modulates nitric oxide (NO) synthesis and protection against myocardial infarction through time-dependent changes in expression of key NO regulatory proteins, guanosine triphosphate cyclohydrolase (GTPCH)-1, the rate-limiting enzyme involved in the biosynthesis of tetrahydrobiopterin and endothelial nitric oxide synthase (eNOS). METHODS: Myocardial infarct size, NO production (ozone-mediated chemiluminescence), GTPCH-1, and eNOS expression (real-time reverse transcriptase polymerase chain reaction and western blotting) were measured in male Wistar rats with or without anesthetic preconditioning (APC; 1.0 minimum alveolar concentration isoflurane for 30 min) and in the presence or absence of an inhibitor of GTPCH-1, 2,4-diamino-6-hydroxypyrimidine. RESULTS: NO2 production (158 ± 16 and 150 ± 13 pmol/mg protein at baseline in control and APC groups, respectively) was significantly (P < 0.05) increased 1.5 ± 0.1 and 1.4 ± 0.1 fold by APC (n = 4) at 60 and 90 min of reperfusion, respectively, concomitantly, with increased expression of GTPCH-1 (1.3 ± 0.3 fold; n = 5) and eNOS (1.3 ± 0.2 fold; n = 5). In contrast, total NO (NO2 and NO3) was decreased after reperfusion in control experiments. Myocardial infarct size was decreased (43 ± 2% of the area at risk for infarction; n = 6) by APC compared with control experiments (57 ± 1%; n = 6). 2, 4-Diamino-6-hydroxypyrimidine decreased total NO production at baseline (221 ± 25 and 175 ± 31 pmol/mg protein at baseline in control and APC groups, respectively), abolished isoflurane-induced increases in NO at reperfusion, and prevented reductions of myocardial infarct size by APC (60 ± 2%; n = 6). CONCLUSION: APC favorably modulated a NO biosynthetic pathway by up-regulating GTPCH-1 and eNOS, and this action contributed to protection of myocardium against ischemia and reperfusion injury.


Asunto(s)
Anestésicos por Inhalación/administración & dosificación , GTP Ciclohidrolasa/biosíntesis , Isoflurano/administración & dosificación , Isquemia Miocárdica/enzimología , Daño por Reperfusión Miocárdica/enzimología , Óxido Nítrico Sintasa de Tipo III/biosíntesis , Animales , Masculino , Isquemia Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Distribución Aleatoria , Ratas , Ratas Wistar
6.
Circ Res ; 110(6): 851-6, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22343710

RESUMEN

RATIONALE: We previously reported that type VI collagen deposition increases in the infarcted myocardium in vivo. To date, a specific role for this nonfibrillar collagen has not been explored in the setting of myocardial infarction (MI). OBJECTIVE: To determine whether deletion of type VI collagen in an in vivo model of post-MI wound healing would alter cardiac function and remodeling in the days to weeks after injury. METHODS AND RESULTS: Wild-type and Col6a1(-/-) mice were subjected to MI, followed by serial echocardiographic and histological assessments. At 8 weeks after MI, infarct size was significantly reduced, ejection fraction was significantly preserved (43.9% ± 3.3% versus 29.1% ± 4.3% for wild-type), and left ventricular chamber dilation was attenuated in the Col6a1(-/-) MI group (25.8% ± 7.9% increase versus 62.6% ± 16.5% for wild-type). The improvement in cardiac remodeling was evident as early as 10 days after MI in the Col6a1(-/-) mice. Myocyte apoptosis within the infarcted zones was initially greater in the Col6a1(-/-) group 3 days after MI, but by day 14 this was significantly reduced. Collagen deposition also was reduced in the infarcted and remote areas of the Col6a1(-/-) hearts. The reductions in chronic myocyte apoptosis and fibrosis are critical events leading to improved long-term remodeling and functional outcomes. CONCLUSIONS: These unexpected results demonstrate for the first time that deletion of type VI collagen in this knockout model plays a critical protective role after MI by limiting infarct size, chronic apoptosis, aberrant remodeling, and fibrosis, leading to preservation of cardiac function.


Asunto(s)
Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/fisiopatología , Remodelación Ventricular/fisiología , Animales , Apoptosis/fisiología , Modelos Animales de Enfermedad , Ecocardiografía , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Fibrosis/genética , Fibrosis/patología , Fibrosis/fisiopatología , Masculino , Ratones , Ratones Noqueados , Infarto del Miocardio/diagnóstico por imagen , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología
7.
Antioxidants (Basel) ; 13(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38929107

RESUMEN

Red light (670 nm) energy controls vasodilation via the formation of a transferable endothelium-derived nitric oxide (NO)-precursor-containing substance, its intracellular traffic, and exocytosis. Here we investigated the underlying mechanistic effect of oxidative stress on light-mediated vasodilation by using pressure myography on dissected murine arteries and immunofluorescence on endothelial cells. Treatment with antioxidants Trolox and catalase decreased vessel dilation. In the presence of catalase, a lower number of exosomes were detected in the vessel bath. Light exposure resulted in increased cellular free radical levels. Mitochondrial reactive oxygen species were also more abundant but did not alter cellular ATP production. Red light enhanced the co-localization of late exosome marker CD63 and cellular S-nitrosoprotein to a greater extent than high glucose, suggesting that a mild oxidative stress favors the localization of NO precursor in late exosomes. Exocytosis regulating protein Rab11 was more abundant after irradiation. Our findings conclude that red-light-induced gentle oxidative stress facilitates the dilation of blood vessels, most likely through empowering the traffic of vasodilatory substances. Application of antioxidants disfavors this mechanism.

8.
J Mol Cell Cardiol ; 62: 36-42, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23702287

RESUMEN

Nitric oxide (NO) is a crucial mediator of hindlimb collateralization and angiogenesis. Within tissues there are nitrosyl-heme proteins which have the potential to generate NO under conditions of hypoxia or low pH. Low level irradiation of blood and muscle with light in the far red/near infrared spectrum (670 nm, R/NIR) facilitates NO release. Therefore, we assessed the impact of red light exposure on the stimulation of femoral artery collateralization. Rabbits and mice underwent unilateral resection of the femoral artery and chronic R/NIR treatment. The direct NO scavenger carboxy-PTIO and the nitric oxide synthase (NOS) inhibitor L-NAME were also administered in the presence of R/NIR. DAF fluorescence assessed R/NIR changes in NO levels within endothelial cells. In vitro measures of R/NIR induced angiogenesis were assessed by endothelial cell proliferation and migration. R/NIR significantly increased collateral vessel number which could not be attenuated with L-NAME. R/NIR induced collateralization was abolished with c-PTIO. In vitro, NO production increased in endothelial cells with R/NIR exposure, and this finding was independent of NOS inhibition. Similarly R/NIR induced proliferation and tube formation in a NO dependent manner. Finally, nitrite supplementation accelerated R/NIR collateralization in wild type C57Bl/6 mice. In an eNOS deficient transgenic mouse model, R/NIR restores collateral development. In conclusion, R/NIR increases NO levels independent of NOS activity, and leads to the observed enhancement of hindlimb collateralization.


Asunto(s)
Arteria Femoral/patología , Arteria Femoral/efectos de la radiación , Miembro Posterior/irrigación sanguínea , Miembro Posterior/patología , Luz , Animales , Proliferación Celular/efectos de la radiación , Miembro Posterior/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de la radiación , Humanos , Isquemia/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Fisiológica/efectos de la radiación , Óxido Nítrico/metabolismo , Conejos
9.
J Lipid Res ; 54(11): 3009-15, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23956444

RESUMEN

Activated leukocytes and polymorphonuclear neutrophils (PMN) release myeloperoxidase (MPO), which binds to endothelial cells (EC), is translocated, and generates oxidants that scavenge nitric oxide (NO) and impair EC function. To determine whether MPO impairs EC function in sickle cell disease (SCD), control (AA) and SCD mice were treated with N-acetyl-lysyltyrosylcysteine-amide (KYC). SCD humans and mice have high plasma MPO and soluble L-selectin (sL-selectin). KYC had no effect on MPO but decreased plasma sL-selectin and malondialdehyde in SCD mice. MPO and 3-chlorotyrosine (3-ClTyr) were increased in SCD aortas. KYC decreased MPO and 3-ClTyr in SCD aortas to the levels in AA aortas. Vasodilatation in SCD mice was impaired. KYC increased vasodilatation in SCD mice more than 2-fold, to ∼60% of levels in AA mice. KYC inhibited MPO-dependent 3-ClTyr formation in EC proteins. SCD mice had high plasma alanine transaminase (ALT), which tended to decrease in KYC-treated SCD mice (P = 0.07). KYC increased MPO and XO/XDH and decreased 3-ClTyr and 3-nitrotyrosine (3-NO2Tyr) in SCD livers. These data support the hypothesis that SCD increases release of MPO, which generates oxidants that impair EC function and injure livers. Inhibiting MPO is an effective strategy for decreasing oxidative stress and liver injury and restoring EC function in SCD.


Asunto(s)
Anemia de Células Falciformes/fisiopatología , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/metabolismo , Inhibidores Enzimáticos/farmacología , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/antagonistas & inhibidores , Vasodilatación/efectos de los fármacos , Anemia de Células Falciformes/enzimología , Anemia de Células Falciformes/metabolismo , Animales , Vasos Sanguíneos/patología , Vasos Sanguíneos/fisiopatología , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Femenino , Humanos , Ácido Hipocloroso/metabolismo , Selectina L/química , Selectina L/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Oligopéptidos/farmacología , Peroxidasa/sangre , Solubilidad
10.
J Lipid Res ; 54(11): 3016-29, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23883583

RESUMEN

Myeloperoxidase (MPO) plays important roles in disease by increasing oxidative and nitrosative stress and oxidizing lipoproteins. Here we report N-acetyl lysyltyrosylcysteine amide (KYC) is an effective inhibitor of MPO activity. We show KYC inhibits MPO-mediated hypochlorous acid (HOCl) formation and nitration/oxidation of LDL. Disulfide is the major product of MPO-mediated KYC oxidation. KYC (≤4,000 µM) does not induce cytotoxicity in bovine aortic endothelial cells (BAECs). KYC inhibits HOCl generation by phorbol myristate acetate (PMA)-stimulated neutrophils and human promyelocytic leukemia (HL-60) cells but not superoxide generation by PMA-stimulated HL-60 cells. KYC inhibits MPO-mediated HOCl formation in BAEC culture and protects BAECs from MPO-induced injury. KYC inhibits MPO-mediated lipid peroxidation of LDL whereas tyrosine (Tyr) and tryptophan (Trp) enhance oxidation. KYC is unique as its isomers do not inhibit MPO activity, or are much less effective. Ultraviolet-visible spectral studies indicate KYC binds to the active site of MPO and reacts with compounds I and II. Docking studies show the Tyr of KYC rests just above the heme of MPO. Interestingly, KYC increases MPO-dependent H2O2 consumption. These data indicate KYC is a novel and specific inhibitor of MPO activity that is nontoxic to endothelial cell cultures. Accordingly, KYC may be useful for treating MPO-mediated vascular disease.


Asunto(s)
Oligopéptidos/farmacología , Peroxidasa/antagonistas & inhibidores , Animales , Aorta/citología , Biocatálisis , Bovinos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células HL-60 , Halogenación/efectos de los fármacos , Humanos , Ácido Hipocloroso/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Neutrófilos/enzimología , Nitratos/metabolismo , Oligopéptidos/metabolismo , Oligopéptidos/toxicidad , Oxidación-Reducción , Peroxidasa/metabolismo
11.
Mol Pain ; 9: 47, 2013 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-24015960

RESUMEN

BACKGROUND: The sigma-1 receptor (σ1R), an endoplasmic reticulum chaperone protein, is widely distributed and regulates numerous intracellular processes in neurons. Nerve injury alters the structure and function of axotomized dorsal root ganglion (DRG) neurons, contributing to the development of pain. The σ1R is enriched in the spinal cord and modulates pain after peripheral nerve injury. However, σ1R expression in the DRG has not been studied. We therefore characterized σ1R expression in DRGs at baseline and following spinal nerve ligation (SNL) in rats. RESULTS: Immunohistochemical (IHC) studies in DRG sections show σ1R in both neuronal somata and satellite glial cells. The punctate distribution of σ1R in the neuronal cytoplasm suggests expression in the endoplasmic reticulum. When classified by neuronal size, large neurons (>1300 µm) showed higher levels of σ1R staining than other groups (700-1300 µm, <700 µm). Comparing σ1R expression in neuronal groups characterized by expression of calcitonin gene-related peptide (CGRP), isolectin-B4 (IB4) and neurofilament-200 (NF-200), we found σ1R expression in all three neuronal subpopulations, with highest levels of σ1R expression in the NF-200 group. After SNL, lysates from L5 DRGs that contains axotomized neurons showed decreased σ1R protein but unaffected transcript level, compared with Control DRGs. IHC images also showed decreased σ1R protein expression, in SNL L5 DRGs, and to a lesser extent in the neighboring SNL L4 DRGs. Neurons labeled by CGRP and NF-200 showed decreased σ1R expression in L5 and, to a lesser extent, L4 DRGs. In IB4-labeled neurons, σ1R expression decreased only in axotomized L5 DRGs. Satellite cells also showed decreased σ1R expression in L5 DRGs after SNL. CONCLUSIONS: Our data show that σ1R is present in both sensory neurons and satellite cells in rat DRGs. Expression of σ1R is down-regulated in axotomized neurons as well as in their accompanying satellite glial cells, while neighboring uninjured neurons show a lesser down-regulation. Therefore, elevated σ1R expression in neuropathic pain is not an explanation for pain relief after σ1R blockade. This implies that increased levels of endogenous σ1R agonists may play a role, and diminished neuroprotection from loss of glial σ1R may be a contributing factor.


Asunto(s)
Regulación de la Expresión Génica , Traumatismos de los Nervios Periféricos/metabolismo , Receptores sigma/genética , Receptores sigma/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Retículo Endoplásmico/metabolismo , Ganglios Espinales/metabolismo , Masculino , Proteínas de Neurofilamentos/metabolismo , Ratas , Ratas Sprague-Dawley , Células Satélites Perineuronales/metabolismo , Receptor Sigma-1
12.
Am J Physiol Heart Circ Physiol ; 305(2): H219-27, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23666677

RESUMEN

Acute hyperglycemia (AHG) decreases the availability of nitric oxide (NO) and impairs anesthetic preconditioning (APC)-elicited protection against myocardial infarction. We investigated whether D-4F, an apolipoprotein A-1 mimetic, rescues the myocardium by promoting APC-induced endothelial NO signaling during AHG. Myocardial infarct size was measured in mice in the absence or presence of APC [isoflurane (1.4%)] with or without AHG [dextrose (2 g/kg ip)] and D-4F (0.12 or 0.6 mg/kg ip). NO production, superoxide generation, protein compartmentalization, and posttranslational endothelial NO synthase (eNOS) modifications were assessed in human coronary artery endothelial cells cultured in 5.5 or 20 mM glucose with or without isoflurane (0.5 mM) in the presence or absence of D-4F (0.5 µg/ml). Myocardial infarct size was significantly decreased by APC (36 ± 3% of risk area) compared with control (54 ± 3%) in the absence, but not presence, of AHG (49 ± 4%). D-4F restored the cardioprotective effect of APC during AHG (36 ± 3% and 30 ± 3%, 0.12 and 0.6 mg/kg, respectively), although D-4F alone had no effect on infarct size (53 ± 3%). Isoflurane promoted caveolin-1 and eNOS compartmentalization within endothelial cell caveolae and eNOS dimerization, concomitant with increased NO production (411 ± 28 vs. 68 ± 10 pmol/mg protein in control). These actions were attenuated by AHG (NO production: 264 ± 18 pmol/mg protein). D-4F reduced superoxide generation and enhanced caveolin-1 and eNOS caveolar compartmentalization and posttranslational eNOS modifications, thus restoring NO production during isoflurane and AHG (418 ± 36 pmol/mg protein). In conclusion, D-4F restored the cardioprotective effect of APC during AHG, possibly by decreasing superoxide generation, which promoted isoflurane-induced eNOS signaling and NO biosynthesis.


Asunto(s)
Apolipoproteína A-I/farmacología , Vasos Coronarios/efectos de los fármacos , Hiperglucemia/complicaciones , Isoflurano/farmacología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Reperfusión Miocárdica/efectos adversos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Transducción de Señal/efectos de los fármacos , Enfermedad Aguda , Animales , Glucemia/metabolismo , Caveolina 1/metabolismo , Células Cultivadas , Vasos Coronarios/enzimología , Modelos Animales de Enfermedad , Quimioterapia Combinada , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Glucosa , Humanos , Hiperglucemia/sangre , Hiperglucemia/inducido químicamente , Hiperglucemia/enzimología , Masculino , Microdominios de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/sangre , Infarto del Miocardio/enzimología , Infarto del Miocardio/etiología , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/sangre , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/patología , Miocardio/enzimología , Miocardio/patología , Óxido Nítrico/metabolismo , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Superóxidos/metabolismo , Factores de Tiempo
13.
Pain ; 164(2): 316-324, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35639439

RESUMEN

ABSTRACT: Targeted muscle reinnervation (TMR) is a clinical intervention that is rapidly becoming common in major limb amputation to prevent or reduce amputation-related pain. However, TMR is much less effective when applied long after injury compared with acute TMR. Since the mechanisms governing pain relief in TMR of amputated nerves are unknown, we developed a preclinical model as a platform for mechanistic examination. Following spared nerve injury (SNI), rats underwent either TMR, simple neuroma excision, or a sham manipulation of the injury site. These interventions were performed immediately or delayed (3 or 12 weeks) after SNI. Pain behavior was measured as sensitivity to mechanical stimuli (pin, von Frey, and dynamic brush) and thermal stimuli (acetone and radiant heat). Spared nerve injury produced hypersensitivity to all mechanical stimuli and cold, which persisted after sham surgery. Targeted muscle reinnervation at the time of SNI prevented the development of pain behaviors and performing TMR 3 weeks after SNI reversed pain behaviors to baseline. By contrast, TMR performed at 12 weeks after SNI had no effect on pain behaviors. Neuroma excision resulted in significantly less reduction in hyperalgesia compared with TMR when performed 3 weeks after SNI but had no effect at 12 weeks after SNI. In this model, the pain phenotype induced by nerve transection is reduced by TMR when performed within 3 weeks after injury. However, TMR delayed 12 weeks after injury fails to reduce pain behaviors. This replicates clinical experience with limb amputation, supporting validity of this model for examining the mechanisms of TMR analgesia.


Asunto(s)
Neuroma , Procedimientos Neuroquirúrgicos , Ratas , Animales , Amputación Quirúrgica/efectos adversos , Dolor/cirugía , Hiperalgesia/etiología , Neuroma/etiología , Neuroma/cirugía , Músculos
14.
J Neurosci ; 31(10): 3536-49, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21389210

RESUMEN

Painful nerve injury disrupts levels of cytoplasmic and stored Ca(2+) in sensory neurons. Since influx of Ca(2+) may occur through store-operated Ca(2+) entry (SOCE) as well as voltage- and ligand-activated pathways, we sought confirmation of SOCE in sensory neurons from adult rats and examined whether dysfunction of SOCE is a possible pathogenic mechanism. Dorsal root ganglion neurons displayed a fall in resting cytoplasmic Ca(2+) concentration when bath Ca(2+) was withdrawn, and a subsequent elevation of cytoplasmic Ca(2+) concentration (40 ± 5 nm) when Ca(2+) was reintroduced, which was amplified by store depletion with thapsigargin (1 µm), and was significantly reduced by blockers of SOCE, but was unaffected by antagonists of voltage-gated membrane Ca(2+) channels. We identified the underlying inwardly rectifying Ca(2+)-dependent I(CRAC) (Ca(2+) release activated current), as well as a large thapsigargin-sensitive inward current activated by withdrawal of bath divalent cations, representing SOCE. Molecular components of SOCE, specifically STIM1 and Orai1, were confirmed in sensory neurons at both the transcript and protein levels. Axonal injury by spinal nerve ligation (SNL) elevated SOCE and I(CRAC). However, SOCE was comparable in injured and control neurons when stores were maximally depleted by thapsigargin, and STIM1 and Orai1 levels were not altered by SNL, showing that upregulation of SOCE after SNL is driven by store depletion. Blockade of SOCE increased neuronal excitability in control and injured neurons, whereas injured neurons showed particular dependence on SOCE for maintaining levels of cytoplasmic and stored Ca(2+), which indicates a compensatory role for SOCE after injury.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Ganglios Espinales/metabolismo , Hiperalgesia/metabolismo , Células Receptoras Sensoriales/metabolismo , Nervios Espinales/lesiones , Análisis de Varianza , Animales , Western Blotting , Células Cultivadas , Ganglios Espinales/citología , Hiperalgesia/fisiopatología , Inmunohistoquímica , Masculino , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Receptoras Sensoriales/citología , Nervios Espinales/metabolismo
15.
Front Physiol ; 13: 880158, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35586710

RESUMEN

Nitric oxide dependent vasodilation is an effective mechanism for restoring blood flow to ischemic tissues. Previously, we established an ex vivo murine model whereby red light (670 nm) facilitates vasodilation via an endothelium derived vasoactive species which contains a functional group that can be reduced to nitric oxide. In the present study we investigated this vasodilator in vivo by measuring blood flow with Laser Doppler Perfusion imaging in mice. The vasodilatory nitric oxide precursor was analyzed in plasma and muscle with triiodide-dependent chemiluminescence. First, a 5-10 min irradiation of a 3 cm2 area in the hind limb at 670 nm (50 mW/cm2) produced optimal vasodilation. The nitric oxide precursor in the irradiated quadriceps tissue decreased significantly from 123 ± 18 pmol/g tissue by both intensity and duration of light treatment to an average of 90 ± 17 pmol/g tissue, while stayed steady (137 ± 21 pmol/g tissue) in unexposed control hindlimb. Second, the blood flow remained elevated 30 min after termination of the light exposure. The nitric oxide precursor content significantly increased by 50% by irradiation then depleted in plasma, while remained stable in the hindlimb muscle. Third, to mimic human peripheral artery disease, an ameroid constrictor was inserted on the proximal femoral artery of mice and caused a significant reduction of flow. Repeated light treatment for 14 days achieved steady and significant increase of perfusion in the constricted limb. Our results strongly support 670 nm light can regulate dilation of conduit vessel by releasing a vasoactive nitric oxide precursor species and may offer a simple home-based therapy in the future to individuals with impaired blood flow in the leg.

16.
J Pregnancy ; 2022: 3922368, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35494491

RESUMEN

Preeclampsia is a serious pregnancy disorder which in extreme cases may lead to maternal and fetal injury or death. Preexisting conditions which increase oxidative stress, e.g., hypertension and diabetes, increase the mother's risk to develop preeclampsia. Previously, we established that when the extracellular matrix is exposed to oxidative stress, trophoblast function is impaired, and this may lead to improper placentation. We investigated how the oxidative ECM present in preeclampsia alters the behavior of first trimester extravillous trophoblasts. We demonstrate elevated levels of advanced glycation end products (AGE) and lipid oxidation end product 4-hydroxynonenal in preeclamptic ECM (28%, and 32% increase vs control, respectively) accompanied with 35% and 82% more 3-chlorotyrosine and 3-nitrotyrosine vs control, respectively. Furthermore, we hypothesized that 670 nm phototherapy, which has antioxidant properties, reverses the observed trophoblast dysfunction as depicted in the improved migration and reduction in apoptosis. Since NO is critical for placentation, we examined eNOS activity in preeclamptic placentas compared to healthy ones and found no differences; however, 670 nm light treatment triggered enhanced NO availability presumably by using alternative NO sources. Light exposure decreased apoptosis and restored trophoblast migration to levels in trophoblasts cultured on preeclamptic ECM. Moreover, 670 nm irradiation restored expression of Transforming Growth Factor (TGFß) and Placental Growth Factor (PLGF) to levels observed in trophoblasts cultured on healthy placental ECM. We conclude the application of 670 nm light can successfully mitigate the damaged placental microenvironment of late onset preeclampsia as depicted by the restored trophoblast behavior.


Asunto(s)
Preeclampsia , Trofoblastos , Matriz Extracelular/metabolismo , Femenino , Humanos , Placenta/metabolismo , Factor de Crecimiento Placentario , Placentación , Preeclampsia/metabolismo , Embarazo , Trofoblastos/metabolismo
17.
J Mol Cell Cardiol ; 51(5): 803-11, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21791217

RESUMEN

Endothelial cells (EC) serve a paracrine function to enhance signaling in cardiomyocytes (CM), and conversely, CM secrete factors that impact EC function. Understanding how EC interact with CM may be critically important in the context of ischemia-reperfusion injury, where EC might promote CM survival. We used isoflurane as a pharmacological stimulus to enhance EC protection of CM against hypoxia and reoxygenation injury. Triggering of intracellular signal transduction pathways culminating in the enhanced production of nitric oxide (NO) appears to be a central component of pharmacologically induced cardioprotection. Although the endothelium is well recognized as a regulator for vascular tone, little attention has been given to its potential importance in mediating cardioprotection. In the current investigation, EC-CM in co-culture were used to test the hypothesis that EC contribute to isoflurane-enhanced protection of CM against hypoxia and reoxygenation injury and that this protection depends on hypoxia-inducible factor (HIF1α) and NO. CM were protected against cell injury [lactate dehydrogenase (LDH) release] to a greater extent in the presence vs. absence of isoflurane-stimulated EC (1.7 ± 0.2 vs. 4.58 ± 0.8 fold change LDH release), and this protection was NO-dependent. Isoflurane enhanced release of NO in EC (1103 ± 58 vs. 702 ± 92 pmol/mg protein) and EC-CM in co-culture sustained NO release during reoxygenation. In contrast, lentiviral mediated HIF1α knockdown in EC decreased basal and isoflurane stimulated NO release in an eNOS dependent manner (517 ± 32 vs. 493 ± 38 pmol/mg protein) and prevented the sustained increase in NO during reoxygenation when co-cultured. Opening of mitochondrial permeability transition pore (mPTP), an index of mitochondrial integrity, was delayed in the presence vs. absence of EC (141 ± 2 vs. 128 ± 2.5 arbitrary mPTP opening time). Isoflurane stimulated an increase in HIF1α in EC but not in CM under normal oxygen tension (3.5 ± 0.1 vs. 0.79 ± 0.15 fold change density) and this action was blocked by pretreatment with the Mitogen-activated Protein/Extracellular Signal-regulated Kinase inhibitor U0126. Expression and nuclear translocation of HIF1α were confirmed by Western blot and immunofluorescence. Taken together, these data support the concept that EC are stimulated by isoflurane to produce important cardioprotective factors that may contribute to protection of myocardium during ischemia and reperfusion injury.


Asunto(s)
Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Miocitos Cardíacos/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Transducción de Señal , Animales , Butadienos/farmacología , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Hipoxia/metabolismo , Hipoxia/prevención & control , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Isoflurano/farmacología , L-Lactato Deshidrogenasa/análisis , L-Lactato Deshidrogenasa/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Poro de Transición de la Permeabilidad Mitocondrial , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo III/genética , Nitrilos/farmacología , Oxidación-Reducción , Fosforilación , Transporte de Proteínas , Ratas , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control , Transducción de Señal/fisiología , Regulación hacia Arriba
18.
Am J Physiol Cell Physiol ; 300(3): C550-6, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21160034

RESUMEN

Systemic sclerosis (SSc) is an autoimmune connective tissue disorder characterized by oxidative stress, impaired vascular function, and attenuated angiogenesis. The tight-skin (Tsk(-/+)) mouse is a model of SSc that displays many of the cellular features of the clinical disease. We tested the hypotheses that abnormal fibrillin-1 expression and chronic phospholipid oxidation occur in Tsk(-/+) mice and, furthermore, that these factors precipitate a prooxidant state, collagen-related protein expression, apoptosis, and mesenchymal transition in endothelial cells cultured on Tsk(-/+) extracellular matrix. Human umbilical vein endothelial cells were seeded on microfibrils isolated from skin of C57BL/6J (control) and Tsk(-/+) mice in the presence or absence of chronic pretreatment with the apolipoprotein Apo A-I mimetic D-4F (1 mg·kg(-1)·day(-1) ip for 6 to 8 wk). Nitric oxide-to-superoxide anion ratio was assessed 12 h after culture, and cell proliferation, apoptosis, and phenotype were studied 72 h after culture. Tsk(-/+) mice demonstrated abnormal "big fibrillin" expression (405 kDa) by Western blot analysis compared with control. Endothelial cells cultured on microfibrils prepared from Tsk(-/+) mice demonstrated reduced proliferation, a prooxidant state (reduced nitric oxide-to-superoxide anion ratio), increased apoptosis, and collagen-related protein expression associated with mesenchymal transition. Chronic D-4F pretreatment of Tsk(-/+) mice attenuated many of these adverse effects. The findings demonstrate that abnormal fibrillin-1 expression and chronic oxidative stress mediate endothelial mesenchymal transition in Tsk(-/+) mice. This mesenchymal transition may contribute to the reduction in angiogenesis that is known to occur in this model of SSc.


Asunto(s)
Células Endoteliales/metabolismo , Mesodermo/metabolismo , Proteínas de Microfilamentos/biosíntesis , Proteínas de Microfilamentos/genética , Estrés Oxidativo , Esclerodermia Sistémica/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Enfermedad Crónica , Modelos Animales de Enfermedad , Células Endoteliales/patología , Femenino , Fibrilina-1 , Fibrilinas , Humanos , Masculino , Mesodermo/patología , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/fisiología , Peso Molecular , Neovascularización Fisiológica/genética , Estrés Oxidativo/genética , Esclerodermia Sistémica/genética , Esclerodermia Sistémica/patología
19.
Anesthesiology ; 115(3): 531-40, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21862887

RESUMEN

BACKGROUND: Reactive oxygen species (ROS) mediate the effects of anesthetic precondition to protect against ischemia and reperfusion injury, but the mechanisms of ROS generation remain unclear. In this study, the authors investigated if mitochondria-targeted antioxidant (mitotempol) abolishes the cardioprotective effects of anesthetic preconditioning. Further, the authors investigated the mechanism by which isoflurane alters ROS generation in isolated mitochondria and submitochondrial particles. METHODS: Rats were pretreated with 0.9% saline, 3.0 mg/kg mitotempol in the absence or presence of 30 min exposure to isoflurane. Myocardial infarction was induced by left anterior descending artery occlusion for 30 min followed by reperfusion for 2 h and infarct size measurements. Mitochondrial ROS production was determined spectrofluorometrically. The effect of isoflurane on enzymatic activity of mitochondrial respiratory complexes was also determined. RESULTS: Isoflurane reduced myocardial infarct size (40 ± 9% = mean ± SD) compared with control experiments (60 ± 4%). Mitotempol abolished the cardioprotective effects of anesthetic preconditioning (60 ± 9%). Isoflurane enhanced ROS generation in submitochondrial particles with nicotinamide adenine dinucleotide (reduced form), but not with succinate, as substrate. In intact mitochondria, isoflurane enhanced ROS production in the presence of rotenone, antimycin A, or ubiquinone when pyruvate and malate were substrates, but isoflurane attenuated ROS production when succinate was substrate. Mitochondrial respiratory experiments and electron transport chain complex assays revealed that isoflurane inhibited only complex I activity. CONCLUSIONS: The results demonstrated that isoflurane produces ROS at complex I and III of the respiratory chain via the attenuation of complex I activity. The action on complex I decreases unfavorable reverse electron flow and ROS release in myocardium during reperfusion.


Asunto(s)
Anestésicos por Inhalación/farmacología , Transporte de Electrón/efectos de los fármacos , Precondicionamiento Isquémico Miocárdico , Isoflurano/farmacología , Mitocondrias Cardíacas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Óxidos N-Cíclicos/metabolismo , Óxidos N-Cíclicos/farmacología , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Hemodinámica/efectos de los fármacos , Técnicas In Vitro , Masculino , Mitocondrias Cardíacas/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Reperfusión Miocárdica , Consumo de Oxígeno/efectos de los fármacos , Ratas , Ratas Wistar , Rotenona/farmacología , Marcadores de Spin , Superóxido Dismutasa/metabolismo , Desacopladores/farmacología
20.
J Photochem Photobiol B ; 220: 112212, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34049180

RESUMEN

Red light (670 nm) promotes ex vivo dilation of blood vessels in a nitric oxide (NO) dependent, but eNOS independent manner by secreting a quasi-stable and transferable vasoactive substance with the characteristics of S-nitrosothiols (RSNO) from the endothelium. In the present work we establish that 670 nm light mediated vasodilation occurs in vivo and is physiologically stable. Light exposure depletes intracellular S-nitroso protein while concomitantly increasing extracellular RNSO, suggesting vesicular pathways are involved. Furthermore, we demonstrate this RSNO vasodilator is embedded in extracellular vesicles (EV). The action of red light on vesicular trafficking appears to increase expression of endosome associated membrane protein CD63 in bovine aortic endothelial cells, enhance endosome localization in the endothelium, and induce exit of RSNO containing EVs from murine facialis arteries. We suggest a mechanism by which the concerted actions of 670 nm light initiate formation of RSNO containing EVs which exit the endothelium and trigger relaxation of smooth muscle cells.


Asunto(s)
Vesículas Extracelulares/metabolismo , Luz , Vasodilatación/efectos de la radiación , Animales , Bovinos , Células Cultivadas , Endotelio Vascular/citología , Endotelio Vascular/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Compuestos Nitrosos/metabolismo , Compuestos de Sulfhidrilo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA