Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(12): 2086-2102.e22, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35561685

RESUMEN

Across biological scales, gene-regulatory networks employ autorepression (negative feedback) to maintain homeostasis and minimize failure from aberrant expression. Here, we present a proof of concept that disrupting transcriptional negative feedback dysregulates viral gene expression to therapeutically inhibit replication and confers a high evolutionary barrier to resistance. We find that nucleic-acid decoys mimicking cis-regulatory sites act as "feedback disruptors," break homeostasis, and increase viral transcription factors to cytotoxic levels (termed "open-loop lethality"). Feedback disruptors against herpesviruses reduced viral replication >2-logs without activating innate immunity, showed sub-nM IC50, synergized with standard-of-care antivirals, and inhibited virus replication in mice. In contrast to approved antivirals where resistance rapidly emerged, no feedback-disruptor escape mutants evolved in long-term cultures. For SARS-CoV-2, disruption of a putative feedback circuit also generated open-loop lethality, reducing viral titers by >1-log. These results demonstrate that generating open-loop lethality, via negative-feedback disruption, may yield a class of antimicrobials with a high genetic barrier to resistance.


Asunto(s)
Antivirales , Regulación Viral de la Expresión Génica/efectos de los fármacos , Animales , Antivirales/farmacología , Farmacorresistencia Viral , Redes Reguladoras de Genes/efectos de los fármacos , Ratones , SARS-CoV-2/efectos de los fármacos , Replicación Viral
2.
Cell ; 184(25): 6022-6036.e18, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34838159

RESUMEN

Viral-deletion mutants that conditionally replicate and inhibit the wild-type virus (i.e., defective interfering particles, DIPs) have long been proposed as single-administration interventions with high genetic barriers to resistance. However, theories predict that robust, therapeutic DIPs (i.e., therapeutic interfering particles, TIPs) must conditionally spread between cells with R0 >1. Here, we report engineering of TIPs that conditionally replicate with SARS-CoV-2, exhibit R0 >1, and inhibit viral replication 10- to 100-fold. Inhibition occurs via competition for viral replication machinery, and a single administration of TIP RNA inhibits SARS-CoV-2 sustainably in continuous cultures. Strikingly, TIPs maintain efficacy against neutralization-resistant variants (e.g., B.1.351). In hamsters, both prophylactic and therapeutic intranasal administration of lipid-nanoparticle TIPs durably suppressed SARS-CoV-2 by 100-fold in the lungs, reduced pro-inflammatory cytokine expression, and prevented severe pulmonary edema. These data provide proof of concept for a class of single-administration antivirals that may circumvent current requirements to continually update medical countermeasures against new variants.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Virus Interferentes Defectuosos/metabolismo , Replicación Viral/efectos de los fármacos , Animales , Antivirales/farmacología , COVID-19/metabolismo , Línea Celular , Chlorocebus aethiops , Medios de Cultivo Condicionados/farmacología , Virus Interferentes Defectuosos/patogenicidad , Sistemas de Liberación de Medicamentos/métodos , Células Epiteliales , Humanos , Masculino , Mesocricetus , Nanopartículas/uso terapéutico , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Células Vero
3.
Cell ; 179(4): 880-894.e10, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31668804

RESUMEN

Current approaches to reducing the latent HIV reservoir entail first reactivating virus-containing cells to become visible to the immune system. A critical second step is killing these cells to reduce reservoir size. Endogenous cytotoxic T-lymphocytes (CTLs) may not be adequate because of cellular exhaustion and the evolution of CTL-resistant viruses. We have designed a universal CAR-T cell platform based on CTLs engineered to bind a variety of broadly neutralizing anti-HIV antibodies. We show that this platform, convertibleCAR-T cells, effectively kills HIV-infected, but not uninfected, CD4 T cells from blood, tonsil, or spleen and only when armed with anti-HIV antibodies. convertibleCAR-T cells also kill within 48 h more than half of the inducible reservoir found in blood of HIV-infected individuals on antiretroviral therapy. The modularity of convertibleCAR-T cell system, which allows multiplexing with several anti-HIV antibodies yielding greater breadth and control, makes it a promising tool for attacking the latent HIV reservoir.


Asunto(s)
Anticuerpos Antiidiotipos/farmacología , Infecciones por VIH/terapia , Inmunoterapia Adoptiva , Replicación Viral/genética , Animales , Anticuerpos Antiidiotipos/inmunología , Células HEK293 , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , VIH-1/patogenicidad , Humanos , Ratones , Tonsila Palatina/inmunología , Tonsila Palatina/metabolismo , Cultivo Primario de Células , Bazo/inmunología , Bazo/metabolismo , Linfocitos T Citotóxicos/inmunología , Latencia del Virus/inmunología , Replicación Viral/inmunología
5.
Cell ; 173(7): 1609-1621.e15, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29754821

RESUMEN

Diverse biological systems utilize fluctuations ("noise") in gene expression to drive lineage-commitment decisions. However, once a commitment is made, noise becomes detrimental to reliable function, and the mechanisms enabling post-commitment noise suppression are unclear. Here, we find that architectural constraints on noise suppression are overcome to stabilize fate commitment. Using single-molecule and time-lapse imaging, we find that-after a noise-driven event-human immunodeficiency virus (HIV) strongly attenuates expression noise through a non-transcriptional negative-feedback circuit. Feedback is established through a serial cascade of post-transcriptional splicing, whereby proteins generated from spliced mRNAs auto-deplete their own precursor unspliced mRNAs. Strikingly, this auto-depletion circuitry minimizes noise to stabilize HIV's commitment decision, and a noise-suppression molecule promotes stabilization. This feedback mechanism for noise suppression suggests a functional role for delayed splicing in other systems and may represent a generalizable architecture of diverse homeostatic signaling circuits.


Asunto(s)
Retroalimentación Fisiológica , VIH-1/metabolismo , ARN Mensajero/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , VIH-1/genética , Humanos , Células Jurkat , Modelos Biológicos , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , Empalme del ARN , Imagen de Lapso de Tiempo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
6.
Cell ; 160(5): 1002-1012, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25723173

RESUMEN

HIV latency is the chief obstacle to eradicating HIV but is widely believed to be an evolutionary accident providing no lentiviral fitness advantage. However, findings of latency being "hardwired" into HIV's gene-regulatory circuitry appear inconsistent with latency being an evolutionary accident, given HIV's rapid mutation rate. Here, we propose that latency is an evolutionary "bet-hedging" strategy whose frequency has been optimized to maximize lentiviral transmission by reducing viral extinction during mucosal infections. The model quantitatively fits the available patient data, matches observations of high-frequency latency establishment in cell culture and primates, and generates two counterintuitive but testable predictions. The first prediction is that conventional CD8-depletion experiments in SIV-infected macaques increase latent cells more than viremia. The second prediction is that strains engineered to have higher replicative fitness­via reduced latency­will exhibit lower infectivity in animal-model mucosal inoculations. Therapeutically, the theory predicts treatment approaches that may substantially enhance "activate-and-kill" HIV-cure strategies.


Asunto(s)
Evolución Biológica , Infecciones por VIH/transmisión , Infecciones por VIH/virología , VIH/fisiología , Modelos Biológicos , Latencia del Virus , Animales , Modelos Animales de Enfermedad , VIH/genética , Infecciones por VIH/inmunología , Humanos , Macaca , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/fisiología
7.
Cell ; 160(5): 990-1001, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25723172

RESUMEN

Biological circuits can be controlled by two general schemes: environmental sensing or autonomous programs. For viruses such as HIV, the prevailing hypothesis is that latent infection is controlled by cellular state (i.e., environment), with latency simply an epiphenomenon of infected cells transitioning from an activated to resting state. However, we find that HIV expression persists despite the activated-to-resting cellular transition. Mathematical modeling indicates that HIV's Tat positive-feedback circuitry enables this persistence and strongly controls latency. To overcome the inherent crosstalk between viral circuitry and cellular activation and to directly test this hypothesis, we synthetically decouple viral dependence on cellular environment from viral transcription. These circuits enable control of viral transcription without cellular activation and show that Tat feedback is sufficient to regulate latency independent of cellular activation. Overall, synthetic reconstruction demonstrates that a largely autonomous, viral-encoded program underlies HIV latency­potentially explaining why cell-targeted latency-reversing agents exhibit incomplete penetrance.


Asunto(s)
VIH/fisiología , Latencia del Virus , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Humanos , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
8.
Cell ; 155(3): 497-9, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24243007

RESUMEN

Classic studies proposed that stochastic variability ("noise") can drive biological fate switching, enhancing evolutionary success. Now, Ho et al. report that HIV's reactivation from dormant (latently infected) patient cells-the major barrier to an HIV cure-is inherently stochastic. Eradicating an incompletely inducible (probabilistic) viral phenotype will require inventive approaches.


Asunto(s)
Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/genética , Latencia del Virus
9.
Nature ; 602(7895): 129-134, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35082446

RESUMEN

Differentiation proceeds along a continuum of increasingly fate-restricted intermediates, referred to as canalization1,2. Canalization is essential for stabilizing cell fate, but the mechanisms that underlie robust canalization are unclear. Here we show that the BRG1/BRM-associated factor (BAF) chromatin-remodelling complex ATPase gene Brm safeguards cell identity during directed cardiogenesis of mouse embryonic stem cells. Despite the establishment of a well-differentiated precardiac mesoderm, Brm-/- cells predominantly became neural precursors, violating germ layer assignment. Trajectory inference showed a sudden acquisition of a non-mesodermal identity in Brm-/- cells. Mechanistically, the loss of Brm prevented de novo accessibility of primed cardiac enhancers while increasing the expression of neurogenic factor POU3F1, preventing the binding of the neural suppressor REST and shifting the composition of BRG1 complexes. The identity switch caused by the Brm mutation was overcome by increasing BMP4 levels during mesoderm induction. Mathematical modelling supports these observations and demonstrates that Brm deletion affects cell fate trajectory by modifying saddle-node bifurcations2. In the mouse embryo, Brm deletion exacerbated mesoderm-deleted Brg1-mutant phenotypes, severely compromising cardiogenesis, and reveals an in vivo role for Brm. Our results show that Brm is a compensable safeguard of the fidelity of mesoderm chromatin states, and support a model in which developmental canalization is not a rigid irreversible path, but a highly plastic trajectory.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Mesodermo/citología , Mesodermo/metabolismo , Miocitos Cardíacos/citología , Factores de Transcripción/metabolismo , Animales , Proteína Morfogenética Ósea 4/metabolismo , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ADN Helicasas/metabolismo , Embrión de Mamíferos , Epigénesis Genética , Femenino , Regulación de la Expresión Génica , Masculino , Ratones , Miocardio/metabolismo , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Fenotipo , Proteínas Represoras/metabolismo , Células Madre/citología , Factores de Tiempo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
10.
Cell ; 151(7): 1569-80, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23260143

RESUMEN

Many signaling circuits face a fundamental tradeoff between accelerating their response speed while maintaining final levels below a cytotoxic threshold. Here, we describe a transcriptional circuitry that dynamically converts signaling inputs into faster rates without amplifying final equilibrium levels. Using time-lapse microscopy, we find that transcriptional activators accelerate human cytomegalovirus (CMV) gene expression in single cells without amplifying steady-state expression levels, and this acceleration generates a significant replication advantage. We map the accelerator to a highly self-cooperative transcriptional negative-feedback loop (Hill coefficient ∼7) generated by homomultimerization of the virus's essential transactivator protein IE2 at nuclear PML bodies. Eliminating the IE2-accelerator circuit reduces transcriptional strength through mislocalization of incoming viral genomes away from PML bodies and carries a heavy fitness cost. In general, accelerators may provide a mechanism for signal-transduction circuits to respond quickly to external signals without increasing steady-state levels of potentially cytotoxic molecules.


Asunto(s)
Infecciones por Citomegalovirus/virología , Citomegalovirus/genética , Redes Reguladoras de Genes , Aptitud Genética , Citomegalovirus/fisiología , Retroalimentación Fisiológica , Fibroblastos/virología , Regulación Viral de la Expresión Génica , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Cuerpos de Inclusión Viral/metabolismo , Imagen de Lapso de Tiempo , Transactivadores/metabolismo , Activación Transcripcional , Replicación Viral
11.
Proc Natl Acad Sci U S A ; 119(39): e2204624119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36074824

RESUMEN

The high transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a primary driver of the COVID-19 pandemic. While existing interventions prevent severe disease, they exhibit mixed efficacy in preventing transmission, presumably due to their limited antiviral effects in the respiratory mucosa, whereas interventions targeting the sites of viral replication might more effectively limit respiratory virus transmission. Recently, intranasally administered RNA-based therapeutic interfering particles (TIPs) were reported to suppress SARS-CoV-2 replication, exhibit a high barrier to resistance, and prevent serious disease in hamsters. Since TIPs intrinsically target the tissues with the highest viral replication burden (i.e., respiratory tissues for SARS-CoV-2), we tested the potential of TIP intervention to reduce SARS-CoV-2 shedding. Here, we report that a single, postexposure TIP dose lowers SARS-CoV-2 nasal shedding, and at 5 days postinfection, infectious virus shed is below detection limits in 4 out of 5 infected animals. Furthermore, TIPs reduce shedding of Delta variant or WA-1 from infected to uninfected hamsters. Cohoused "contact" animals exposed to infected, TIP-treated animals exhibited significantly lower viral loads, reduced inflammatory cytokines, no severe lung pathology, and shortened shedding duration compared to animals cohoused with untreated infected animals. TIPs may represent an effective countermeasure to limit SARS-CoV-2 transmission.


Asunto(s)
COVID-19 , ARN Mensajero , ARN Interferente Pequeño , SARS-CoV-2 , Esparcimiento de Virus , Animales , COVID-19/terapia , COVID-19/transmisión , Cricetinae , ARN Mensajero/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , SARS-CoV-2/genética , SARS-CoV-2/fisiología
12.
Proc Natl Acad Sci U S A ; 117(19): 10350-10356, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32358201

RESUMEN

Nongenetic cellular heterogeneity is associated with aging and disease. However, the origins of cell-to-cell variability are complex and the individual contributions of different factors to total phenotypic variance are still unclear. Here, we took advantage of clear phenotypic heterogeneity of circadian oscillations in clonal cell populations to investigate the underlying mechanisms of cell-to-cell variability. Using a fully automated tracking and analysis pipeline, we examined circadian period length in thousands of single cells and hundreds of clonal cell lines and found that longer circadian period is associated with increased intercellular heterogeneity. Based on our experimental results, we then estimated the contributions of heritable and nonheritable factors to this variation in circadian period length using a variance partitioning model. We found that nonheritable noise predominantly drives intercellular circadian period variation in clonal cell lines, thereby revealing a previously unrecognized link between circadian oscillations and intercellular heterogeneity. Moreover, administration of a noise-enhancing drug reversibly increased both period length and variance. These findings suggest that circadian period may be used as an indicator of cellular noise and drug screening for noise control.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Modelos Biológicos , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Circadianas Period/metabolismo , Análisis de la Célula Individual/métodos , Animales , Células Cultivadas , Mediciones Luminiscentes , Ratones , Células Madre Embrionarias de Ratones/citología , Proteínas Circadianas Period/genética , Procesos Estocásticos
13.
Proc Natl Acad Sci U S A ; 117(29): 17240-17248, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32632017

RESUMEN

Probabilistic bet hedging, a strategy to maximize fitness in unpredictable environments by matching phenotypic variability to environmental variability, is theorized to account for the evolution of various fate-specification decisions, including viral latency. However, the molecular mechanisms underlying bet hedging remain unclear. Here, we report that large variability in protein abundance within individual herpesvirus virion particles enables probabilistic bet hedging between viral replication and latency. Superresolution imaging of individual virions of the human herpesvirus cytomegalovirus (CMV) showed that virion-to-virion levels of pp71 tegument protein-the major viral transactivator protein-exhibit extreme variability. This super-Poissonian tegument variability promoted alternate replicative strategies: high virion pp71 levels enhance viral replicative fitness but, strikingly, impede silencing, whereas low virion pp71 levels reduce fitness but promote silencing. Overall, the results indicate that stochastic tegument packaging provides a mechanism enabling probabilistic bet hedging between viral replication and latency.


Asunto(s)
Citomegalovirus/genética , Citomegalovirus/fisiología , Proteínas Virales/metabolismo , Latencia del Virus/genética , Latencia del Virus/fisiología , Evolución Biológica , Infecciones por Citomegalovirus , Regulación Viral de la Expresión Génica , Humanos , Monocitos , Virión/metabolismo , Replicación Viral
14.
Bioessays ; 41(7): e1900044, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31222776

RESUMEN

Recent evidence indicates that transcriptional bursts are intrinsically amplified by messenger RNA cytoplasmic processing to generate large stochastic fluctuations in protein levels. These fluctuations can be exploited by cells to enable probabilistic bet-hedging decisions. But large fluctuations in gene expression can also destabilize cell-fate commitment. Thus, it is unclear if cells temporally switch from high to low noise, and what mechanisms enable this switch. Here, the discovery of a post-transcriptional mechanism that attenuates noise in HIV is reviewed. Early in its life cycle, HIV amplifies transcriptional fluctuations to probabilistically select alternate fates, whereas at late times, HIV utilizes a post-transcriptional feedback mechanism to commit to a specific fate. Reanalyzing various reported post-transcriptional negative feedback architectures reveals that they attenuate noise more efficiently than classic transcriptional autorepression, leading to the derivation of an assay to detect post-transcriptional motifs. It is hypothesized that coupling transcriptional and post-transcriptional autoregulation enables efficient temporal noise control to benefit developmental bet-hedging decisions.


Asunto(s)
Retroalimentación Fisiológica/fisiología , Regulación de la Expresión Génica/genética , Transcripción Genética/genética , VIH-1/genética , VIH-1/metabolismo , Humanos , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética
15.
Proc Natl Acad Sci U S A ; 115(37): E8803-E8810, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30150412

RESUMEN

A fundamental signal-processing problem is how biological systems maintain phenotypic states (i.e., canalization) long after degradation of initial catalyst signals. For example, to efficiently replicate, herpesviruses (e.g., human cytomegalovirus, HCMV) rapidly counteract cell-mediated silencing using transactivators packaged in the tegument of the infecting virion particle. However, the activity of these tegument transactivators is inherently transient-they undergo immediate proteolysis but delayed synthesis-and how transient activation sustains lytic viral gene expression despite cell-mediated silencing is unclear. By constructing a two-color, conditional-feedback HCMV mutant, we find that positive feedback in HCMV's immediate-early 1 (IE1) protein is of sufficient strength to sustain HCMV lytic expression. Single-cell time-lapse imaging and mathematical modeling show that IE1 positive feedback converts transient transactivation signals from tegument pp71 proteins into sustained lytic expression, which is obligate for efficient viral replication, whereas attenuating feedback decreases fitness by promoting a reversible silenced state. Together, these results identify a regulatory mechanism enabling herpesviruses to sustain expression despite transient activation signals-akin to early electronic transistors-and expose a potential target for therapeutic intervention.


Asunto(s)
Citomegalovirus/genética , Retroalimentación Fisiológica , Regulación Viral de la Expresión Génica , Replicación Viral/genética , Línea Celular , Células Cultivadas , Citomegalovirus/fisiología , Interacciones Huésped-Patógeno , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Microscopía Fluorescente , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/virología , Imagen de Lapso de Tiempo/métodos
16.
PLoS Biol ; 15(10): e2000841, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29045398

RESUMEN

Fundamental to biological decision-making is the ability to generate bimodal expression patterns where 2 alternate expression states simultaneously exist. Here, we use a combination of single-cell analysis and mathematical modeling to examine the sources of bimodality in the transcriptional program controlling HIV's fate decision between active replication and viral latency. We find that the HIV transactivator of transcription (Tat) protein manipulates the intrinsic toggling of HIV's promoter, the long terminal repeat (LTR), to generate bimodal ON-OFF expression and that transcriptional positive feedback from Tat shifts and expands the regime of LTR bimodality. This result holds for both minimal synthetic viral circuits and full-length virus. Strikingly, computational analysis indicates that the Tat circuit's noncooperative "nonlatching" feedback architecture is optimized to slow the promoter's toggling and generate bimodality by stochastic extinction of Tat. In contrast to the standard Poisson model, theory and experiment show that nonlatching positive feedback substantially dampens the inverse noise-mean relationship to maintain stochastic bimodality despite increasing mean expression levels. Given the rapid evolution of HIV, the presence of a circuit optimized to robustly generate bimodal expression appears consistent with the hypothesis that HIV's decision between active replication and latency provides a viral fitness advantage. More broadly, the results suggest that positive-feedback circuits may have evolved not only for signal amplification but also for robustly generating bimodality by decoupling expression fluctuations (noise) from mean expression levels.


Asunto(s)
Retroalimentación Fisiológica , Regulación Viral de la Expresión Génica/genética , VIH-1/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Algoritmos , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Infecciones por VIH/virología , Duplicado del Terminal Largo de VIH/genética , VIH-1/fisiología , Humanos , Células Jurkat , Microscopía Confocal , Modelos Genéticos , Regiones Promotoras Genéticas/genética , Análisis de la Célula Individual/métodos , Procesos Estocásticos , Transcripción Genética , Latencia del Virus
17.
PLoS Genet ; 12(5): e1005986, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27149616

RESUMEN

Rapidly evolving viruses are a major threat to human health. Such viruses are often highly pathogenic (e.g., influenza virus, HIV, Ebola virus) and routinely circumvent therapeutic intervention through mutational escape. Error-prone genome replication generates heterogeneous viral populations that rapidly adapt to new selection pressures, leading to resistance that emerges with treatment. However, population heterogeneity bears a cost: when multiple viral variants replicate within a cell, they can potentially interfere with each other, lowering viral fitness. This genetic interference can be exploited for antiviral strategies, either by taking advantage of a virus's inherent genetic diversity or through generating de novo interference by engineering a competing genome. Here, we discuss two such antiviral strategies, dominant drug targeting and therapeutic interfering particles. Both strategies harness the power of genetic interference to surmount two particularly vexing obstacles-the evolution of drug resistance and targeting therapy to high-risk populations-both of which impede treatment in resource-poor settings.


Asunto(s)
Antivirales/uso terapéutico , Farmacorresistencia Viral/genética , Ebolavirus/genética , VIH-1/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Ebolavirus/efectos de los fármacos , Ebolavirus/patogenicidad , Variación Genética , Genoma Viral , VIH-1/efectos de los fármacos , VIH-1/patogenicidad , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Selección Genética/genética , Replicación Viral/genética
18.
Biophys J ; 112(11): 2428-2438, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28591615

RESUMEN

Threshold generation in fate-selection circuits is often achieved through deterministic bistability, which requires cooperativity (i.e., nonlinear activation) and associated hysteresis. However, the Tat positive-feedback loop that controls HIV's fate decision between replication and proviral latency lacks self-cooperativity and deterministic bistability. Absent cooperativity, it is unclear how HIV can temporarily remain in an off-state long enough for the kinetically slower epigenetic silencing mechanisms to act-expression fluctuations should rapidly trigger active positive feedback and replication, precluding establishment of latency. Here, using flow cytometry and single-cell imaging, we find that the Tat circuit exhibits a transient activation threshold. This threshold largely disappears after ∼40 h-accounting for the lack of deterministic bistability-and promoter activation shortens the lifetime of this transient threshold. Continuous differential equation models do not recapitulate this phenomenon. However, chemical reaction (master equation) models where the transcriptional transactivator and promoter toggle between inactive and active states can recapitulate the phenomenon because they intrinsically create a single-molecule threshold transiently requiring excess molecules in the inactive state to achieve at least one molecule (rather than a continuous fractional value) in the active state. Given the widespread nature of promoter toggling and transcription factor modifications, transient thresholds may be a general feature of inducible promoters.


Asunto(s)
Regulación Viral de la Expresión Génica , Redes Reguladoras de Genes , Duplicado del Terminal Largo de VIH , VIH/genética , Transcripción Genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Retroalimentación Fisiológica , Citometría de Flujo , Humanos , Células Jurkat , Cinética , Microscopía Fluorescente , Modelos Moleculares , Análisis de la Célula Individual , Procesos Estocásticos
19.
PLoS Comput Biol ; 12(5): e1004799, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27152856

RESUMEN

The rapid evolution of RNA-encoded viruses such as HIV presents a major barrier to infectious disease control using conventional pharmaceuticals and vaccines. Previously, it was proposed that defective interfering particles could be developed to indefinitely control the HIV/AIDS pandemic; in individual patients, these engineered molecular parasites were further predicted to be refractory to HIV's mutational escape (i.e., be 'resistance-proof'). However, an outstanding question has been whether these engineered interfering particles-termed Therapeutic Interfering Particles (TIPs)-would remain resistance-proof at the population-scale, where TIP-resistant HIV mutants may transmit more efficiently by reaching higher viral loads in the TIP-treated subpopulation. Here, we develop a multi-scale model to test whether TIPs will maintain indefinite control of HIV at the population-scale, as HIV ('unilaterally') evolves toward TIP resistance by limiting the production of viral proteins available for TIPs to parasitize. Model results capture the existence of two intrinsic evolutionary tradeoffs that collectively prevent the spread of TIP-resistant HIV mutants in a population. First, despite their increased transmission rates in TIP-treated sub-populations, unilateral TIP-resistant mutants are shown to have reduced transmission rates in TIP-untreated sub-populations. Second, these TIP-resistant mutants are shown to have reduced growth rates (i.e., replicative fitness) in both TIP-treated and TIP-untreated individuals. As a result of these tradeoffs, the model finds that TIP-susceptible HIV strains continually outcompete TIP-resistant HIV mutants at both patient and population scales when TIPs are engineered to express >3-fold more genomic RNA than HIV expresses. Thus, the results provide design constraints for engineering population-scale therapies that may be refractory to the acquisition of antiviral resistance.


Asunto(s)
Fármacos Anti-VIH/farmacología , Virus Defectuosos/efectos de los fármacos , Virus Defectuosos/genética , Diseño de Fármacos , VIH/efectos de los fármacos , VIH/genética , Biología Computacional , Farmacorresistencia Viral/genética , Evolución Molecular , VIH/fisiología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/transmisión , Infecciones por VIH/virología , Humanos , Modelos Biológicos , Mutación , Selección Genética , Carga Viral , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
20.
Proc Natl Acad Sci U S A ; 109(43): 17454-9, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23064634

RESUMEN

Gene expression occurs either as an episodic process, characterized by pulsatile bursts, or as a constitutive process, characterized by a Poisson-like accumulation of gene products. It is not clear which mode of gene expression (constitutive versus bursty) predominates across a genome or how transcriptional dynamics are influenced by genomic position and promoter sequence. Here, we use time-lapse fluorescence microscopy to analyze 8,000 individual human genomic loci and find that at virtually all loci, episodic bursting--as opposed to constitutive expression--is the predominant mode of expression. Quantitative analysis of the expression dynamics at these 8,000 loci indicates that both the frequency and size of the transcriptional bursts varies equally across the human genome, independent of promoter sequence. Strikingly, weaker expression loci modulate burst frequency to increase activity, whereas stronger expression loci modulate burst size to increase activity. Transcriptional activators such as trichostatin A (TSA) and tumor necrosis factor α (TNF) only modulate burst size and frequency along a constrained trend line governed by the promoter. In summary, transcriptional bursting dominates across the human genome, both burst frequency and burst size vary by chromosomal location, and transcriptional activators alter burst frequency and burst size, depending on the expression level of the locus.


Asunto(s)
Genoma Humano , Transcripción Genética , Expresión Génica , Vectores Genéticos , Humanos , Ácidos Hidroxámicos/farmacología , Lentivirus/genética , Microscopía Fluorescente , Regiones Promotoras Genéticas , Transcripción Genética/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA