Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 166(3): 784-784.e1, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27471972

RESUMEN

Aging is characterized by loss of homeostasis across multiple tissues. The nervous system governs whole-body homeostasis by communicating external and internal signals to peripheral tissues. Here, we highlight neuronal mechanisms and downstream outputs that regulate aging and longevity. Targeting these neuronal pathways may be a novel strategy to promote healthy aging. To view this SnapShot, open or download the PDF.


Asunto(s)
Envejecimiento/fisiología , Fenómenos Fisiológicos del Sistema Nervioso , Humanos , Sistema Nervioso , Vías Nerviosas
2.
Cell ; 160(5): 842-855, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25723162

RESUMEN

Low energy states delay aging in multiple species, yet mechanisms coordinating energetics and longevity across tissues remain poorly defined. The conserved energy sensor AMP-activated protein kinase (AMPK) and its corresponding phosphatase calcineurin modulate longevity via the CREB regulated transcriptional coactivator (CRTC)-1 in C. elegans. We show that CRTC-1 specifically uncouples AMPK/calcineurin-mediated effects on lifespan from pleiotropic side effects by reprogramming mitochondrial and metabolic function. This pro-longevity metabolic state is regulated cell nonautonomously by CRTC-1 in the nervous system. Neuronal CRTC-1/CREB regulates peripheral metabolism antagonistically with the functional PPARα ortholog, NHR-49, drives mitochondrial fragmentation in distal tissues, and suppresses the effects of AMPK on systemic mitochondrial metabolism and longevity via a cell-nonautonomous catecholamine signal. These results demonstrate that while both local and distal mechanisms combine to modulate aging, distal regulation overrides local contribution. Targeting central perception of energetic state is therefore a potential strategy to promote healthy aging.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Catecolaminas/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Caenorhabditis elegans/citología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Longevidad , Receptores Citoplasmáticos y Nucleares/metabolismo
4.
Nature ; 541(7635): 102-106, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27919065

RESUMEN

Ageing is driven by a loss of transcriptional and protein homeostasis and is the key risk factor for multiple chronic diseases. Interventions that attenuate or reverse systemic dysfunction associated with age therefore have the potential to reduce overall disease risk in the elderly. Precursor mRNA (pre-mRNA) splicing is a fundamental link between gene expression and the proteome, and deregulation of the splicing machinery is linked to several age-related chronic illnesses. However, the role of splicing homeostasis in healthy ageing remains unclear. Here we demonstrate that pre-mRNA splicing homeostasis is a biomarker and predictor of life expectancy in Caenorhabditis elegans. Using transcriptomics and in-depth splicing analysis in young and old animals fed ad libitum or subjected to dietary restriction, we find defects in global pre-mRNA splicing with age that are reduced by dietary restriction via splicing factor 1 (SFA-1; the C. elegans homologue of SF1, also known as branchpoint binding protein, BBP). We show that SFA-1 is specifically required for lifespan extension by dietary restriction and by modulation of the TORC1 pathway components AMPK, RAGA-1 and RSKS-1/S6 kinase. We also demonstrate that overexpression of SFA-1 is sufficient to extend lifespan. Together, these data demonstrate a role for RNA splicing homeostasis in dietary restriction longevity and suggest that modulation of specific spliceosome components may prolong healthy ageing.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Restricción Calórica , Longevidad/genética , Longevidad/fisiología , Complejos Multiproteicos/metabolismo , Factores de Empalme de ARN/metabolismo , Empalme del ARN , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Envejecimiento/genética , Animales , Proteínas de Caenorhabditis elegans/genética , Genoma/genética , Homeostasis , Diana Mecanicista del Complejo 1 de la Rapamicina , Precursores del ARN/genética , Precursores del ARN/metabolismo , Factores de Empalme de ARN/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transcriptoma
5.
Elife ; 82019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31411562

RESUMEN

Target of rapamycin complex 1 (TORC1) and AMP-activated protein kinase (AMPK) antagonistically modulate metabolism and aging. However, how they coordinate to determine longevity and if they act via separable mechanisms is unclear. Here, we show that neuronal AMPK is essential for lifespan extension from TORC1 inhibition, and that TORC1 suppression increases lifespan cell non autonomously via distinct mechanisms from global AMPK activation. Lifespan extension by null mutations in genes encoding raga-1 (RagA) or rsks-1 (S6K) is fully suppressed by neuronal-specific rescues. Loss of RAGA-1 increases lifespan via maintaining mitochondrial fusion. Neuronal RAGA-1 abrogation of raga-1 mutant longevity requires UNC-64/syntaxin, and promotes mitochondrial fission cell nonautonomously. Finally, deleting the mitochondrial fission factor DRP-1 renders the animal refractory to the pro-aging effects of neuronal RAGA-1. Our results highlight a new role for neuronal TORC1 in cell nonautonomous regulation of longevity, and suggest TORC1 in the central nervous system might be targeted to promote healthy aging.


Asunto(s)
Caenorhabditis elegans/enzimología , Caenorhabditis elegans/fisiología , Longevidad , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Dinámicas Mitocondriales , Proteínas Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales
6.
Cell Metab ; 26(6): 884-896.e5, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29107506

RESUMEN

Mitochondrial network remodeling between fused and fragmented states facilitates mitophagy, interaction with other organelles, and metabolic flexibility. Aging is associated with a loss of mitochondrial network homeostasis, but cellular processes causally linking these changes to organismal senescence remain unclear. Here, we show that AMP-activated protein kinase (AMPK) and dietary restriction (DR) promote longevity in C. elegans via maintaining mitochondrial network homeostasis and functional coordination with peroxisomes to increase fatty acid oxidation (FAO). Inhibiting fusion or fission specifically blocks AMPK- and DR-mediated longevity. Strikingly, however, preserving mitochondrial network homeostasis during aging by co-inhibition of fusion and fission is sufficient itself to increase lifespan, while dynamic network remodeling is required for intermittent fasting-mediated longevity. Finally, we show that increasing lifespan via maintaining mitochondrial network homeostasis requires FAO and peroxisomal function. Together, these data demonstrate that mechanisms that promote mitochondrial homeostasis and plasticity can be targeted to promote healthy aging.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Restricción Calórica , Longevidad , Mitocondrias/metabolismo , Peroxisomas/metabolismo , Proteínas Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Envejecimiento , Animales , Línea Celular , Ácidos Grasos/metabolismo , Metabolómica , Ratones , Mitocondrias/ultraestructura , Dinámicas Mitocondriales , Modelos Animales
7.
Exp Suppl ; 107: 227-256, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27812983

RESUMEN

Chronic, age-associated diseases are already among the leading causes of morbidity and death in the world, a problem exacerbated by the rapidly rising proportion of elderly in the global population. This emergent epidemic represents the next great challenge for biomedical science and public health. Fortunately, decades of studies into the biology of aging have provided a head start by revealing an evolutionarily conserved network of genes that controls the rate and quality of the aging process itself and which can thereby be targeted for protection against age-onset disease. A number of dietary, genetic, and pharmacological interventions, including dietary restriction (DR) and the biguanide metformin, can extend healthy lifespan and reduce the incidence of multiple chronic conditions. Many of these interventions recurrently involve a core network of nutrient sensors: AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), the insulin/insulin-like growth factor signaling pathway (IIS), and the sirtuins. Here, we will summarize how AMPK acts downstream of these pro-longevity interventions and within this network of nutrient sensors to control the cell and physiological processes important for defining how well we age.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Metabolismo Energético/genética , Longevidad/genética , Sirtuinas/genética , Somatomedinas/genética , Serina-Treonina Quinasas TOR/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagia/genética , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Restricción Calórica , Metabolismo Energético/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Insulina/genética , Insulina/metabolismo , Longevidad/efectos de los fármacos , Metformina/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transducción de Señal , Sirtuinas/metabolismo , Somatomedinas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
8.
Genes Cancer ; 4(3-4): 118-24, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24020003

RESUMEN

SIRT3 is a NAD(+)-dependent deacetylase that regulates the function of numerous mitochondrial proteins with roles in metabolism, oxidative stress, and cell survival. It is emerging as an instrumental regulator of the mitochondrial adaptive responses to stress, including metabolic reprogramming and enhancing antioxidant defense mechanisms. Here, we discuss the role that SIRT3 plays at both a cellular and physiological level and consider its involvement in disease. Mitochondrial dysfunction is a key contributing factor in many diseases; however, the mechanisms involved are often not well understood, and few targeted therapies exist. If manipulation of SIRT3 proves to be beneficial in disease states, then it could be a promising target for novel therapies.

9.
PLoS One ; 7(11): e48225, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23139766

RESUMEN

Progressive mitochondrial dysfunction contributes to neuronal degeneration in age-mediated disease. An essential regulator of mitochondrial function is the deacetylase, sirtuin 3 (SIRT3). Here we investigate a role for CNS Sirt3 in mitochondrial responses to reactive oxygen species (ROS)- and Alzheimer's disease (AD)-mediated stress. Pharmacological augmentation of mitochondrial ROS increases Sirt3 expression in primary hippocampal culture with SIRT3 over-expression being neuroprotective. Furthermore, Sirt3 expression mirrors spatiotemporal deposition of ß-amyloid in an AD mouse model and is also upregulated in AD patient temporal neocortex. Thus, our data suggest a role for SIRT3 in mechanisms sensing and tackling ROS- and AD-mediated mitochondrial stress.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Especies Reactivas de Oxígeno/metabolismo , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Transporte de Electrón , Células HEK293 , Células HeLa , Humanos , Lentivirus , Ratones , Mitocondrias/metabolismo , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Sirtuina 3/genética , Sirtuina 3/metabolismo , Fracciones Subcelulares/metabolismo , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA