Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Nature ; 620(7976): 951-952, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37612489

Asunto(s)
Antozoos , Animales , Humanos , Amigos , Comidas
2.
Appl Environ Microbiol ; 88(12): e0041222, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35678605

RESUMEN

Bidirectional nutrient flow between partners is integral to the cnidarian-dinoflagellate endosymbiosis. However, our current knowledge of the transporter proteins that regulate nutrient and metabolite trafficking is nascent. Four transmembrane transporters that likely play an important role in interpartner nitrogen and carbon exchange were investigated with immunocytochemistry in the model sea anemone Exaiptasia diaphana ("Aiptasia"; strain NZ1): ammonium transporter 1 (AMT1), V-type proton ATPase (VHA), facilitated glucose transporter member 8 (GLUT8), and aquaporin-3 (AQP3). Anemones lacking symbionts were compared with those in symbiosis with either their typical, homologous dinoflagellate symbiont, Breviolum minutum, or the heterologous species, Durusdinium trenchii and Symbiodinium microadriaticum. AMT1 and VHA were only detected in symbiotic Aiptasia, irrespective of symbiont type. However, GLUT8 and AQP3 were detected in both symbiotic and aposymbiotic states. All transporters were localized to both the epidermis and gastrodermis, though localization patterns in host tissues were heavily influenced by symbiont identity, with S. microadriaticum-colonized anemones showing the most distinct patterns. These patterns suggested disruption of fixed carbon and inorganic nitrogen fluxes when in symbiosis with heterologous versus homologous symbionts. This study enhances our understanding of nutrient transport and host-symbiont integration, while providing a platform for further investigation of nutrient transporters and the host-symbiont interface in the cnidarian-dinoflagellate symbiosis. IMPORTANCE Coral reefs are in serious decline, in particular due to the thermally induced dysfunction of the cnidarian-dinoflagellate symbiosis that underlies their success. Yet our ability to react to this crisis is hindered by limited knowledge of how this symbiosis functions. Indeed, we still have much to learn about the cellular integration that determines whether a particular host-symbiont combination can persist, and hence whether corals might be able to adapt by acquiring new, more thermally resistant symbionts. Here, we employed immunocytochemistry to localize and quantify key nutrient transporters in tissues of the sea anemone Aiptasia, a globally adopted model system for this symbiosis, and compared the expression of these transporters when the host is colonized by native versus nonnative symbionts. We showed a clear link between transporter expression and symbiont identity, elucidating the cellular events that dictate symbiosis success, and we provide a methodological platform for further examination of cellular integration in this ecologically important symbiosis.


Asunto(s)
Dinoflagelados , Anémonas de Mar , Animales , Carbono , Nitrógeno , Anémonas de Mar/fisiología , Simbiosis
3.
Mol Ecol ; 31(22): 5813-5830, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36168983

RESUMEN

The endosymbiosis between most corals and their photosynthetic dinoflagellate partners begins early in the host life history, when corals are larvae or juvenile polyps. The capacity of coral larvae to buffer climate-induced stress while in the process of symbiont acquisition could come with physiological trade-offs that alter behaviour, development, settlement and survivorship. Here we examined the joint effects of thermal stress and symbiosis onset on colonization dynamics, survival, metamorphosis and host gene expression of Acropora digitifera larvae. We found that thermal stress decreased symbiont colonization of hosts by 50% and symbiont density by 98.5% over 2 weeks. Temperature and colonization also influenced larval survival and metamorphosis in an additive manner, where colonized larvae fared worse or prematurely metamorphosed more often than noncolonized larvae under thermal stress. Transcriptomic responses to colonization and thermal stress treatments were largely independent, while the interaction of these treatments revealed contrasting expression profiles of genes that function in the stress response, immunity, inflammation and cell cycle regulation. The combined treatment either cancelled or lowered the magnitude of expression of heat-stress responsive genes in the presence of symbionts, revealing a physiological cost to acquiring symbionts at the larval stage with elevated temperatures. In addition, host immune suppression, a hallmark of symbiosis onset under ambient temperature, turned to immune activation under heat stress. Thus, by integrating the physical environment and biotic pressures that mediate presettlement event in corals, our results suggest that colonization may hinder larval survival and recruitment under projected climate scenarios.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Antozoos/fisiología , Simbiosis/genética , Arrecifes de Coral , Larva/genética , Dinoflagelados/genética , Respuesta al Choque Térmico/genética
4.
J Exp Biol ; 225(19)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36156083

RESUMEN

The establishment and maintenance of the symbiosis between a cnidarian host and its dinoflagellate symbionts is central to the success of coral reefs. To explore the metabolite production underlying this symbiosis, we focused on a group of low molecular weight secondary metabolites, biogenic volatile organic compounds (BVOCs). BVOCs are released from an organism or environment, and can be collected in the gas phase, allowing non-invasive analysis of an organism's metabolism (i.e. 'volatilomics'). We characterised volatile profiles of the sea anemone Aiptasia (Exaiptasia diaphana), a model system for cnidarian-dinoflagellate symbiosis, using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. We compared volatile profiles between: (1) symbiotic anemones containing their native symbiont, Breviolum minutum; (2) aposymbiotic anemones; and (3) cultured isolates of B. minutum. Overall, 152 BVOCs were detected, and classified into 14 groups based on their chemical structure, the most numerous groups being alkanes and aromatic compounds. A total of 53 BVOCs were differentially abundant between aposymbiotic anemones and B. minutum cultures; 13 between aposymbiotic and symbiotic anemones; and 60 between symbiotic anemones and cultures of B. minutum. More BVOCs were differentially abundant between cultured and symbiotic dinoflagellates than between aposymbiotic and symbiotic anemones, suggesting that symbiosis may modify symbiont physiology more than host physiology. This is the first volatilome analysis of the Aiptasia model system and provides a foundation from which to explore how BVOC production is perturbed under environmental stress, and ultimately the role they play in this important symbiosis.


Asunto(s)
Dinoflagelados , Anémonas de Mar , Compuestos Orgánicos Volátiles , Alcanos , Animales , Dinoflagelados/fisiología , Anémonas de Mar/fisiología , Simbiosis
5.
J Phycol ; 57(1): 30-38, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33191496

RESUMEN

Much of our understanding of the cellular mechanisms underlying cnidarian-algal symbiosis comes from studying the biological differences between the partners when they are engaged in symbiosis and when they are isolated from one another. When comparing the in hospite and ex hospite states in Symbiodiniaceae, the in hospite state is represented by algae sampled from hosts, and the ex hospite state is commonly represented by cultured algae. The use of cultured algae in this comparison may introduce nutrition as a confounding variable because, while hosts are kept in nutrient-depleted conditions, culture media is nutrient rich and designed to facilitate algal growth. In this perspective, we reexamine how nutrition may be a confounding variable in studies that compare the biology of Symbiodiniaceae in hospite and in culture. We also suggest several innovations in experimental design to strengthen the comparison of the two lifestyles, including the adoption of nutritional controls, alternatives to culture for the representation of Symbiodiniaceae ex hospite, and the adoption of several proteomic approaches to find novel Symbiodiniaceae genes important for symbiosis.


Asunto(s)
Cnidarios , Dinoflagelados , Animales , Nutrientes , Proteómica , Simbiosis
6.
Environ Microbiol ; 22(9): 3741-3753, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32592285

RESUMEN

Hosting different symbiont species can affect inter-partner nutritional fluxes within the cnidarian-dinoflagellate symbiosis. Using nanoscale secondary ion mass spectrometry (NanoSIMS), we measured the spatial incorporation of photosynthetically fixed 13 C and heterotrophically derived 15 N into host and symbiont cells of the model symbiotic cnidarian Aiptasia (Exaiptasia pallida) when colonized with its native symbiont Breviolum minutum or the non-native Durusdinium trenchii. Breviolum minutum exhibited high photosynthetic carbon assimilation per cell and translocation to host tissue throughout symbiosis establishment, whereas D. trenchii assimilated significantly less carbon, but obtained more host nitrogen. These findings suggest that D. trenchii has less potential to provide photosynthetically fixed carbon to the host despite obtaining considerable amounts of heterotrophically derived nitrogen. These sub-cellular events help explain previous observations that demonstrate differential effects of D. trenchii compared to B. minutum on the host transcriptome, proteome, metabolome and host growth and asexual reproduction. Together, these differential effects suggest that the non-native host-symbiont pairing is sub-optimal with respect to the host's nutritional benefits under normal environmental conditions. This contributes to our understanding of the ways in which metabolic integration impacts the benefits of a symbiotic association, and the potential evolution of novel host-symbiont pairings.


Asunto(s)
Dinoflagelados/metabolismo , Anémonas de Mar/metabolismo , Animales , Carbono/metabolismo , Dinoflagelados/genética , Metaboloma , Nitrógeno/metabolismo , Fotosíntesis , Proteoma , Anémonas de Mar/genética , Anémonas de Mar/microbiología , Simbiosis , Transcriptoma
7.
J Exp Biol ; 223(Pt 13)2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32487669

RESUMEN

Carbonic anhydrases (CA; EC 4.2.1.1) play a vital role in dissolved inorganic carbon (DIC) transport to photosynthetic microalgae residing in symbiotic cnidarians. The temperate sea anemone Anthopleura elegantissima can occur in three symbiotic states: hosting Breviolum muscatinei (brown), hosting Elliptochloris marina (green) or without algal symbionts (aposymbiotic). This provides a basis for A. elegantissima to be a model for detailed studies of the role of CA in DIC transport. This study investigated the effects of symbiosis, body size and light on CA activity and expression, and suggests that A. elegantissima has a heterotrophy-dominated trophic strategy. We identified putative A. elegantissima CA genes and performed phylogenetic analyses to infer subcellular localization in anemones. We performed experiments on field-collected anemones to compare: (1) CA activity and expression from anemones in different symbiotic states, (2) CA activity in brown anemones as a function of size, and (3) CA activity in anemones of different symbiotic states that were exposed to different light intensities. CA activity in brown anemones was highest, whereas activity in green and aposymbiotic anemones was low. Several CAs had expression patterns that mirrored activity, while another had expression that was inversely correlated with activity, suggesting that symbionts may induce different DIC transport pathways. Finally, CA activity was inversely correlated with anemone size. Our results suggest that the observed CA activity and expression patterns are affected not only by symbiosis, but also by other factors in the host physiology, including trophic strategy as it relates to body size and cellular pH homeostasis.


Asunto(s)
Anhidrasas Carbónicas , Dinoflagelados , Anémonas de Mar , Animales , Anhidrasas Carbónicas/genética , Filogenia , Anémonas de Mar/genética , Simbiosis
8.
Microb Ecol ; 80(1): 223-236, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31982929

RESUMEN

The success of symbioses between cnidarian hosts (e.g., corals and sea anemones) and micro-algal symbionts hinges on the molecular interactions that govern the establishment and maintenance of intracellular mutualisms. As a fundamental component of innate immunity, glycan-lectin interactions impact the onset of marine endosymbioses, but our understanding of the effects of cell surface glycome composition on symbiosis establishment remains limited. In this study, we examined the canonical N-glycan biosynthesis pathway in the genome of the dinoflagellate symbiont Breviolum minutum (family Symbiodiniaceae) and found it to be conserved with the exception of the transferase GlcNAc-TII (MGAT2). Using coupled liquid chromatography-mass spectrometry (LC-MS/MS), we characterized the cell surface N-glycan content of B. minutum, providing the first insight into the molecular composition of surface glycans in dinoflagellates. We then used the biosynthesis inhibitors kifunensine and swainsonine to alter the glycan composition of B. minutum. Successful high-mannose enrichment via kifunensine treatment resulted in a significant decrease in colonization of the model sea anemone Aiptasia (Exaiptasia pallida) by B. minutum. Hybrid glycan enrichment via swainsonine treatment, however, could not be confirmed and did not impact colonization. We conclude that functional Golgi processing of N-glycans is critical for maintaining appropriate cell surface glycan composition and for ensuring colonization success by B. minutum.


Asunto(s)
Antozoos/microbiología , Dinoflagelados/fisiología , Polisacáridos/fisiología , Simbiosis , Animales , Interacciones Microbiota-Huesped , Polisacáridos/biosíntesis , Polisacáridos/química
9.
Proc Natl Acad Sci U S A ; 114(50): 13194-13199, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29158383

RESUMEN

The relationship between corals and dinoflagellates of the genus Symbiodinium is fundamental to the functioning of coral ecosystems. It has been suggested that reef corals may adapt to climate change by changing their dominant symbiont type to a more thermally tolerant one, although the capacity for such a shift is potentially hindered by the compatibility of different host-symbiont pairings. Here we combined transcriptomic and metabolomic analyses to characterize the molecular, cellular, and physiological processes that underlie this compatibility, with a particular focus on Symbiodinium trenchii, an opportunistic, thermally tolerant symbiont that flourishes in coral tissues after bleaching events. Symbiont-free individuals of the sea anemone Exaiptasia pallida (commonly referred to as Aiptasia), an established model system for the study of the cnidarian-dinoflagellate symbiosis, were colonized with the "normal" (homologous) symbiont Symbiodinium minutum and the heterologous S. trenchii Analysis of the host gene and metabolite expression profiles revealed that heterologous symbionts induced an expression pattern intermediate between the typical symbiotic state and the aposymbiotic state. Furthermore, integrated pathway analysis revealed that increased catabolism of fixed carbon stores, metabolic signaling, and immune processes occurred in response to the heterologous symbiont type. Our data suggest that both nutritional provisioning and the immune response induced by the foreign "invader" are important factors in determining the capacity of corals to adapt to climate change through the establishment of novel symbioses.


Asunto(s)
Dinoflagelados/genética , Anémonas de Mar/genética , Simbiosis/genética , Animales , Arrecifes de Coral , Dinoflagelados/metabolismo , Dinoflagelados/fisiología , Metaboloma , Estrés Oxidativo , Anémonas de Mar/metabolismo , Anémonas de Mar/fisiología , Simbiosis/inmunología , Transcriptoma
10.
Proc Biol Sci ; 285(1892)2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30487315

RESUMEN

Metabolite exchange is fundamental to the viability of the cnidarian-Symbiodiniaceae symbiosis and survival of coral reefs. Coral holobiont tolerance to environmental change might be achieved through changes in Symbiodiniaceae species composition, but differences in the metabolites supplied by different Symbiodiniaceae species could influence holobiont fitness. Using 13C stable-isotope labelling coupled to gas chromatography-mass spectrometry, we characterized newly fixed carbon fate in the model cnidarian Exaiptasia pallida (Aiptasia) when experimentally colonized with either native Breviolum minutum or non-native Durusdinium trenchii Relative to anemones containing B. minutum, D. trenchii-colonized hosts exhibited a 4.5-fold reduction in 13C-labelled glucose and reduced abundance and diversity of 13C-labelled carbohydrates and lipogenesis precursors, indicating symbiont species-specific modifications to carbohydrate availability and lipid storage. Mapping carbon fate also revealed significant alterations to host molecular signalling pathways. In particular, D. trenchii-colonized hosts exhibited a 40-fold reduction in 13C-labelled scyllo-inositol, a potential interpartner signalling molecule in symbiosis specificity. 13C-labelling also highlighted differential antioxidant- and ammonium-producing pathway activities, suggesting physiological responses to different symbiont species. Such differences in symbiont metabolite contribution and host utilization may limit the proliferation of stress-driven symbioses; this contributes valuable information towards future scenarios that select in favour of less-competent symbionts in response to environmental change.


Asunto(s)
Dinoflagelados/fisiología , Metabolismo Energético , Anémonas de Mar/fisiología , Simbiosis , Animales
11.
Mol Phylogenet Evol ; 120: 307-320, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29233707

RESUMEN

Metabolic exchange between cnidarians and their symbiotic dinoflagellates is central to maintaining their mutualistic relationship. Sugars are translocated to the host, while ammonium and nitrate are utilized by the dinoflagellates (Symbiodinium spp.). We investigated membrane protein sequences of each partner to identify potential transporter proteins that move sugars into cnidarian cells and nitrogen products into Symbiodinium cells. We examined the facilitated glucose transporters (GLUT), sodium/glucose cotransporters (SGLT), and aquaporin (AQP) channels in the cnidarian host as mechanisms for sugar uptake, and the ammonium and high-affinity nitrate transporters (AMT and NRT2, respectively) in the algal symbiont as mechanisms for nitrogen uptake. Homologous protein sequences were used for phylogenetic analysis and tertiary structure deductions. In cnidarians, we identified putative glucose transporters of the GLUT family and glycerol transporting AQP proteins, as well as sodium monocarboxylate transporters and sodium myo-inositol cotransporters homologous to SGLT proteins. We hypothesize that cnidarians use GLUT proteins as the primary mechanism for glucose uptake, while glycerol moves into cells by passive diffusion. We also identified putative AMT proteins in several Symbiodinium clades and putative NRT2 proteins only in a single clade. We further observed an upregulation of expressed putative AMT proteins in Symbiodinium, which may have emerged as an adaptation to conditions experienced inside the host cell. This study is the first to identify transporter sequences from a diversity of cnidarian species and Symbiodinium clades, which will be useful for future experimental analyses of the host-symbiont proteome and the nutritional exchange of Symbiodinium cells in hospite.


Asunto(s)
Cnidarios/clasificación , Dinoflagelados/clasificación , Filogenia , Animales , Proteínas de Transporte de Anión/química , Proteínas de Transporte de Anión/clasificación , Proteínas de Transporte de Anión/genética , Acuaporinas/química , Acuaporinas/clasificación , Acuaporinas/genética , Cnidarios/metabolismo , Biología Computacional , Dinoflagelados/metabolismo , Transportadores de Nitrato , Estructura Terciaria de Proteína , Proteínas de Transporte de Sodio-Glucosa/química , Proteínas de Transporte de Sodio-Glucosa/clasificación , Proteínas de Transporte de Sodio-Glucosa/genética , Simbiosis/fisiología
12.
Proc Natl Acad Sci U S A ; 112(38): 11893-8, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26324906

RESUMEN

The most diverse marine ecosystems, coral reefs, depend upon a functional symbiosis between a cnidarian animal host (the coral) and intracellular photosynthetic dinoflagellate algae. The molecular and cellular mechanisms underlying this endosymbiosis are not well understood, in part because of the difficulties of experimental work with corals. The small sea anemone Aiptasia provides a tractable laboratory model for investigating these mechanisms. Here we report on the assembly and analysis of the Aiptasia genome, which will provide a foundation for future studies and has revealed several features that may be key to understanding the evolution and function of the endosymbiosis. These features include genomic rearrangements and taxonomically restricted genes that may be functionally related to the symbiosis, aspects of host dependence on alga-derived nutrients, a novel and expanded cnidarian-specific family of putative pattern-recognition receptors that might be involved in the animal-algal interactions, and extensive lineage-specific horizontal gene transfer. Extensive integration of genes of prokaryotic origin, including genes for antimicrobial peptides, presumably reflects an intimate association of the animal-algal pair also with its prokaryotic microbiome.


Asunto(s)
Antozoos/fisiología , Genoma/genética , Anémonas de Mar/genética , Simbiosis/genética , Animales , Cromosomas/genética , Evolución Molecular , Perfilación de la Expresión Génica , Transferencia de Gen Horizontal/genética , Tamaño del Genoma , Interacciones Microbianas/genética , Modelos Biológicos , Anotación de Secuencia Molecular , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos/genética , Sintenía/genética
13.
J Proteome Res ; 16(6): 2121-2134, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28474894

RESUMEN

Coral bleaching has devastating effects on coral survival and reef ecosystem function, but many of the fundamental cellular effects of thermal stress on cnidarian physiology are unclear. We used label-free liquid chromatography-tandem mass spectrometry to compare the effects of rapidly (33.5 °C, 24 h) and gradually (30 and 33.5 °C, 12 days) elevated temperatures on the proteome of the model symbiotic anemone Aiptasia. We identified 2133 proteins in Aiptasia, 136 of which were differentially abundant between treatments. Thermal shock, but not acclimation, resulted in significant abundance changes in 104 proteins, including those involved in protein folding and synthesis, redox homeostasis, and central metabolism. Nineteen abundant structural proteins showed particularly reduced abundance, demonstrating proteostasis disruption and potential protein synthesis inhibition. Heat shock induced antioxidant mechanisms and proteins involved in stabilizing nascent proteins, preventing protein aggregation and degrading damaged proteins, which is indicative of endoplasmic reticulum stress. Host proteostasis disruption occurred before either bleaching or symbiont photoinhibition was detected, suggesting host-derived reactive oxygen species production as the proximate cause of thermal damage. The pronounced abundance changes in endoplasmic reticulum proteins associated with proteostasis and protein turnover indicate that these processes are essential in the cellular response of symbiotic cnidarians to severe thermal stress.


Asunto(s)
Antozoos/metabolismo , Estrés del Retículo Endoplásmico , Respuesta al Choque Térmico/fisiología , Proteostasis , Simbiosis , Animales , Antozoos/química , Cromatografía Liquida , Oxidación-Reducción , Biosíntesis de Proteínas , Pliegue de Proteína , Proteómica/métodos , Especies Reactivas de Oxígeno/metabolismo , Espectrometría de Masas en Tándem
14.
Mol Ecol ; 26(15): 3913-3925, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28467676

RESUMEN

Reproductive timing in brooding corals has been correlated to temperature and lunar irradiance, but the mechanisms by which corals transduce these environmental variables into molecular signals are unknown. To gain insight into these processes, global gene expression profiles in the coral Pocillopora damicornis were examined (via RNA-Seq) across lunar phases and between temperature treatments, during a monthly planulation cycle. The interaction of temperature and lunar day together had the largest influence on gene expression. Mean timing of planulation, which occurred at lunar days 7.4 and 12.5 for 28- and 23°C-treated corals, respectively, was associated with an upregulation of transcripts in individual temperature treatments. Expression profiles of planulation-associated genes were compared between temperature treatments, revealing that elevated temperatures disrupted expression profiles associated with planulation. Gene functions inferred from homologous matches to online databases suggest complex neuropeptide signalling, with calcium as a central mediator, acting through tyrosine kinase and G protein-coupled receptor pathways. This work contributes to our understanding of coral reproductive physiology and the impacts of environmental variables on coral reproductive pathways.


Asunto(s)
Antozoos/genética , Periodicidad , Temperatura , Transcriptoma , Animales , Antozoos/fisiología , Luna , Reproducción
15.
Cell Microbiol ; 18(7): 1009-23, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26716757

RESUMEN

Coral reef ecosystems are metabolically founded on the mutualism between corals and photosynthetic dinoflagellates of the genus Symbiodinium. The glass anemone Aiptasia sp. has become a tractable model for this symbiosis, and recent advances in genetic information have enabled the use of mass spectrometry-based proteomics in this model. We utilized label-free liquid chromatography electrospray-ionization tandem mass spectrometry to analyze the effects of symbiosis on the proteomes of symbiotic and aposymbiotic Aiptasia. We identified and obtained relative quantification of more than 3,300 proteins in 1,578 protein clusters, with 81 protein clusters showing significantly different expression between symbiotic states. Symbiotic anemones showed significantly higher expression of proteins involved in lipid storage and transport, nitrogen transport and cycling, intracellular trafficking, endocytosis and inorganic carbon transport. These changes reflect shifts in host metabolism and nutrient reserves due to increased nutritional exchange with the symbionts, as well as mechanisms for supplying inorganic nutrients to the algae. Aposymbiotic anemones exhibited increased expression of multiple systems responsible for mediating reactive oxygen stress, suggesting that the host derives direct or indirect protection from oxidative stress while in symbiosis. Aposymbiotic anemones also increased their expression of an array of proteases and chitinases, indicating a metabolic shift from autotrophy to heterotrophy. These results provide a comprehensive Aiptasia proteome with more direct relative quantification of protein abundance than transcriptomic methods. The extension of "omics" techniques to this model system will allow more powerful studies of coral physiology, ecosystem function, and the effects of biotic and abiotic stress on the coral-dinoflagellate mutualism.


Asunto(s)
Dinoflagelados/fisiología , Proteoma/análisis , Anémonas de Mar/fisiología , Simbiosis , Animales , Cromatografía Liquida/métodos , Endocitosis , Procesos Heterotróficos , Metabolismo de los Lípidos , Nitrógeno/metabolismo , Proteoma/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos
16.
J Exp Biol ; 220(Pt 9): 1709-1720, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28250108

RESUMEN

Sphingolipids play important roles in mitigating cellular heat and oxidative stress by altering membrane fluidity, receptor clustering and gene expression. Accumulation of signaling sphingolipids that comprise the sphingosine rheostat, pro-apoptotic sphingosine (Sph) and pro-survival sphingosine-1-phosphate (S1P) is key to determining cell fate. Reef-building corals and other symbiotic cnidarians living in shallow tropical waters can experience elevated seawater temperature and high UV irradiance, two stressors that are increasing in frequency and severity with climate change. In symbiotic cnidarians, these stressors disrupt the photosynthetic machinery of the endosymbiont and ultimately result in the collapse of the partnership (dysbiosis), known as cnidarian bleaching. In a previous study, exogenously applied sphingolipids altered heat-induced bleaching in the symbiotic anemone Aiptasia pallida, but endogenous regulation of these lipids is unknown. Here, we characterized the role of the rheostat in the cnidarian heat stress response (HSR) and in dysbiosis. Gene expression of rheostat enzymes sphingosine kinase (AP-SPHK) and S1P phosphatase (AP-SGPP), and concentrations of sphingolipids were quantified from anemones incubated at elevated temperatures. We observed a biphasic HSR in A. pallida. At early exposure, rheostat gene expression and lipid levels were suppressed while gene expression of a heat stress biomarker increased and 40% of symbionts were lost. After longer incubations at the highest temperature, AP-SGPP and then Sph levels both increased. These results indicate that the sphingosine rheostat in A. pallida does not participate in initiation of dysbiosis, but instead functions in the chronic response to prolonged heat stress that promotes host survival.


Asunto(s)
Calor , Anémonas de Mar/fisiología , Esfingosina/metabolismo , Animales , Dinoflagelados/genética , Dinoflagelados/fisiología , Disbiosis/metabolismo , Regulación de la Expresión Génica , Respuesta al Choque Térmico , Anémonas de Mar/enzimología , Anémonas de Mar/genética , Esfingolípidos/farmacología , Simbiosis
17.
J Exp Biol ; 219(Pt 3): 306-10, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26596538

RESUMEN

Experimental manipulation of the symbiosis between cnidarians and photosynthetic dinoflagellates (Symbiodinium spp.) is crucial to advancing the understanding of the cellular mechanisms involved in host-symbiont interactions, and overall coral reef ecology. The anemone Aiptasia sp. is a model for cnidarian-dinoflagellate symbiosis, and notably it can be rendered aposymbiotic (i.e. dinoflagellate-free) and re-infected with a range of Symbiodinium types. Various methods exist for generating aposymbiotic hosts; however, they can be hugely time consuming and not wholly effective. Here, we optimise a method using menthol for production of aposymbiotic Aiptasia. The menthol treatment produced aposymbiotic hosts within just 4 weeks (97-100% symbiont loss), and the condition was maintained long after treatment when anemones were held under a standard light:dark cycle. The ability of Aiptasia to form a stable symbiosis appeared to be unaffected by menthol exposure, as demonstrated by successful re-establishment of the symbiosis when anemones were experimentally re-infected. Furthermore, there was no significant impact on photosynthetic or respiratory performance of re-infected anemones.


Asunto(s)
Dinoflagelados/efectos de los fármacos , Mentol/farmacología , Fisiología/métodos , Anémonas de Mar/fisiología , Simbiosis/efectos de los fármacos , Animales , Arrecifes de Coral , Dinoflagelados/fisiología , Fotosíntesis
18.
Zygote ; 24(4): 511-6, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26349407

RESUMEN

The synchrony of spawning is of paramount importance to successful coral reproduction. The precise timing of spawning is thought to be controlled by a set of interacting environmental factors, including regional wind field patterns, timing of the sunset, and sea surface temperatures (SST). Climate change is resulting in increased SST, which is causing physiological stress in corals and could also be altering spawning synchrony and timing. In this study, we examined the effect of increasing seawater temperature by 2°C for 1 month prior to the predicted spawning time on reproduction in the coral Acropora digitifera. This short period of elevated temperature caused spawning to advance by 1 day. In animals incubated at elevated temperature, egg number per egg bundle did not change, however, egg volume significantly decreased as did sperm number. Our results indicate that temperature is acting both as a proximate cue to accelerate timing and as a stressor on gametogenesis to reduce fecundity. This finding suggests that increasing SSTs could play a dramatic role in altering reproductive timing and the success of corals in an era of climate change.


Asunto(s)
Antozoos/fisiología , Cambio Climático , Ecosistema , Temperatura , Animales , Femenino , Fertilidad/fisiología , Gametogénesis/fisiología , Geografía , Japón , Masculino , Reproducción/fisiología , Agua de Mar , Factores de Tiempo
19.
Biol Rev Camb Philos Soc ; 99(3): 715-752, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38217089

RESUMEN

The intracellular coral-dinoflagellate symbiosis is the engine that underpins the success of coral reefs, one of the most diverse ecosystems on the planet. However, the breakdown of the symbiosis and the loss of the microalgal symbiont (i.e. coral bleaching) due to environmental changes are resulting in the rapid degradation of coral reefs globally. There is an urgent need to understand the cellular physiology of coral bleaching at the mechanistic level to help develop solutions to mitigate the coral reef crisis. Here, at an unprecedented scope, we present novel models that integrate putative mechanisms of coral bleaching within a common framework according to the triggers (initiators of bleaching, e.g. heat, cold, light stress, hypoxia, hyposalinity), cascades (cellular pathways, e.g. photoinhibition, unfolded protein response, nitric oxide), and endpoints (mechanisms of symbiont loss, e.g. apoptosis, necrosis, exocytosis/vomocytosis). The models are supported by direct evidence from cnidarian systems, and indirectly through comparative evolutionary analyses from non-cnidarian systems. With this approach, new putative mechanisms have been established within and between cascades initiated by different bleaching triggers. In particular, the models provide new insights into the poorly understood connections between bleaching cascades and endpoints and highlight the role of a new mechanism of symbiont loss, i.e. 'symbiolysosomal digestion', which is different from symbiophagy. This review also increases the approachability of bleaching physiology for specialists and non-specialists by mapping the vast landscape of bleaching mechanisms in an atlas of comprehensible and detailed mechanistic models. We then discuss major knowledge gaps and how future research may improve the understanding of the connections between the diverse cascade of cellular pathways and the mechanisms of symbiont loss (endpoints).


Asunto(s)
Antozoos , Dinoflagelados , Simbiosis , Animales , Antozoos/fisiología , Dinoflagelados/fisiología , Simbiosis/fisiología , Arrecifes de Coral
20.
ISME J ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38988135

RESUMEN

Cellular mechanisms responsible for the regulation of nutrient exchange, immune responses, and symbiont population growth in the cnidarian-dinoflagellate symbiosis are poorly resolved, particularly with respect to the dinoflagellate symbiont. Here, we characterised proteomic changes in the native symbiont Breviolum minutum during colonisation of its host sea anemone Exaiptasia diaphana ("Aiptasia"). We also compared the proteome of this native symbiont in the established symbiotic state with that of a non-native symbiont, Durusdinium trenchii. The onset of symbiosis between Aiptasia and Branchioglossum minutum increased accumulation of symbiont proteins associated with acquisition of inorganic carbon and photosynthesis, nitrogen metabolism, micro- and macronutrient starvation, suppression of host immune responses, tolerance to low pH, and management of oxidative stress. Such responses are consistent with a functional, persistent symbiosis. In contrast, D. trenchii predominantly showed elevated levels of immunosuppressive proteins, consistent with the view that this symbiont is an opportunist that forms a less beneficial, less well-integrated symbiosis with this model anemone. By adding symbiont analysis to the already known responses of the host proteome, our results provide a more holistic view of cellular processes that determine host-symbiont specificity and how differences in symbiont partners (i.e., native versus non-native symbionts) may impact the fitness of the cnidarian-dinoflagellate symbiosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA