Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
PLoS Pathog ; 16(1): e1008251, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31961914

RESUMEN

Patients with cystic fibrosis (CF) have altered fecal microbiomes compared to those of healthy controls. The magnitude of this dysbiosis correlates with measures of CF gastrointestinal (GI) disease, including GI inflammation and nutrient malabsorption. However, whether this dysbiosis is caused by mutations in the CFTR gene, the underlying defect in CF, or whether CF-associated dysbiosis augments GI disease was not clear. To test the relationships between CFTR dysfunction, microbes, and intestinal health, we established a germ-free (GF) CF mouse model and demonstrated that CFTR gene mutations are sufficient to alter the GI microbiome. Furthermore, flow cytometric analysis demonstrated that colonized CF mice have increased mesenteric lymph node and spleen TH17+ cells compared with non-CF mice, suggesting that CFTR defects alter adaptive immune responses. Our findings demonstrate that CFTR mutations modulate both the host adaptive immune response and the intestinal microbiome.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/microbiología , Disbiosis/microbiología , Microbioma Gastrointestinal , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Fibrosis Quística/genética , Fibrosis Quística/inmunología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/inmunología , Modelos Animales de Enfermedad , Disbiosis/genética , Disbiosis/inmunología , Femenino , Humanos , Intestinos/inmunología , Intestinos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación
2.
BMC Microbiol ; 21(1): 247, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34525965

RESUMEN

BACKGROUND: Infants with cystic fibrosis (CF) suffer from gastrointestinal (GI) complications, including pancreatic insufficiency and intestinal inflammation, which have been associated with impaired nutrition and growth. Recent evidence identified altered fecal microbiota taxonomic compositions in infants with CF relative to healthy infants that were characterized by differences in the abundances of taxa associated with GI health and nutrition. Furthermore, these taxonomic differences were more pronounced in low length infants with CF, suggesting a potential link to linear growth failure. We hypothesized that these differences would entail shifts in the microbiome's functional capacities that could contribute to inflammation and nutritional failure in infants with CF. RESULTS: To test this hypothesis, we compared fecal microbial metagenomic content between healthy infants and infants with CF, supplemented with an analysis of fecal metabolomes in infants with CF. We identified notable differences in CF fecal microbial functional capacities, including metabolic and environmental response functions, compared to healthy infants that intensified during the first year of life. A machine learning-based longitudinal metagenomic age analysis of healthy and CF fecal metagenomic functional profiles further demonstrated that these differences are characterized by a CF-associated delay in the development of these functional capacities. Moreover, we found metagenomic differences in functions related to metabolism among infants with CF that were associated with diet and antibiotic exposure, and identified several taxa as potential drivers of these functional differences. An integrated metagenomic and metabolomic analysis further revealed that abundances of several fecal GI metabolites important for nutrient absorption, including three bile acids, correlated with specific microbes in infants with CF. CONCLUSIONS: Our results highlight several metagenomic and metabolomic factors, including bile acids and other microbial metabolites, that may impact nutrition, growth, and GI health in infants with CF. These factors could serve as promising avenues for novel microbiome-based therapeutics to improve health outcomes in these infants.


Asunto(s)
Fibrosis Quística/complicaciones , Fibrosis Quística/microbiología , Disbiosis/complicaciones , Heces/microbiología , Enfermedades Gastrointestinales/etiología , Metaboloma , Metagenoma , Enfermedades Gastrointestinales/microbiología , Enfermedades Gastrointestinales/fisiopatología , Humanos , Lactante , Estudios Longitudinales , Metabolómica/métodos , Estudios Prospectivos
3.
Proc Natl Acad Sci U S A ; 115(7): 1605-1610, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29378945

RESUMEN

The mature human gut microbiota is established during the first years of life, and altered intestinal microbiomes have been associated with several human health disorders. Escherichia coli usually represents less than 1% of the human intestinal microbiome, whereas in cystic fibrosis (CF), greater than 50% relative abundance is common and correlates with intestinal inflammation and fecal fat malabsorption. Despite the proliferation of E. coli and other Proteobacteria in conditions involving chronic gastrointestinal tract inflammation, little is known about adaptation of specific characteristics associated with microbiota clonal expansion. We show that E. coli isolated from fecal samples of young children with CF has adapted to growth on glycerol, a major component of fecal fat. E. coli isolates from different CF patients demonstrate an increased growth rate in the presence of glycerol compared with E. coli from healthy controls, and unrelated CF E. coli strains have independently acquired this growth trait. Furthermore, CF and control E. coli isolates have differential gene expression when grown in minimal media with glycerol as the sole carbon source. While CF isolates display a growth-promoting transcriptional profile, control isolates engage stress and stationary-phase programs, which likely results in slower growth rates. Our results indicate that there is selection of unique characteristics within the microbiome of individuals with CF, which could contribute to individual disease outcomes.


Asunto(s)
Fibrosis Quística/microbiología , Infecciones por Escherichia coli/microbiología , Escherichia coli/patogenicidad , Heces/microbiología , Microbioma Gastrointestinal/genética , Intestinos/microbiología , Estudios de Casos y Controles , Preescolar , Fibrosis Quística/genética , Fibrosis Quística/patología , Grasas de la Dieta/metabolismo , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/patología , Redes Reguladoras de Genes , Glicerol/metabolismo , Humanos , Lactante , Fosfolípidos/metabolismo , Filogenia , Estados Unidos
4.
Thorax ; 75(9): 780-790, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32631930

RESUMEN

RATIONALE: The most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic Pseudomonas aeruginosa lung infections. While the effects of inhaled tobramycin on P. aeruginosa abundance and lung function diminish with continued therapy, this maintenance treatment is known to improve long-term outcomes, underscoring how little is known about why antibiotics work in CF infections, what their effects are on complex CF sputum microbiomes and how to improve these treatments. OBJECTIVES: To rigorously define the effect of maintenance tobramycin on CF sputum microbiome characteristics. METHODS AND MEASUREMENTS: We collected sputum from 30 PWCF at standardised times before, during and after a single month-long course of maintenance inhaled tobramycin. We used traditional culture, quantitative PCR and metagenomic sequencing to define the dynamic effects of this treatment on sputum microbiomes, including abundance changes in both clinically targeted and untargeted bacteria, as well as functional gene categories. MAIN RESULTS: CF sputum microbiota changed most markedly by 1 week of antibiotic therapy and plateaued thereafter, and this shift was largely driven by changes in non-dominant taxa. The genetically conferred functional capacities (ie, metagenomes) of subjects' sputum communities changed little with antibiotic perturbation, despite taxonomic shifts, suggesting functional redundancy within the CF sputum microbiome. CONCLUSIONS: Maintenance treatment with inhaled tobramycin, an antibiotic with demonstrated long-term mortality benefit, primarily impacted clinically untargeted bacteria in CF sputum, highlighting the importance of monitoring the non-canonical effects of antibiotics and other treatments to accurately define and improve their clinical impact.


Asunto(s)
Antibacterianos/farmacología , Bacterias , Fibrosis Quística/microbiología , Microbiota/efectos de los fármacos , Esputo/microbiología , Tobramicina/farmacología , Administración por Inhalación , Adolescente , Adulto , Anciano , Antibacterianos/uso terapéutico , Bacterias/genética , Bacterias/aislamiento & purificación , Infecciones Bacterianas/prevención & control , Niño , Fibrosis Quística/fisiopatología , Volumen Espiratorio Forzado , Humanos , Quimioterapia de Mantención , Metagenoma/efectos de los fármacos , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Factores de Tiempo , Tobramicina/uso terapéutico , Adulto Joven
5.
Proc Natl Acad Sci U S A ; 112(10): E1096-105, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25713353

RESUMEN

We previously reported that lagging-strand genes accumulate mutations faster than those encoded on the leading strand in Bacillus subtilis. Although we proposed that orientation-specific encounters between replication and transcription underlie this phenomenon, the mechanism leading to the increased mutagenesis of lagging-strand genes remained unknown. Here, we report that the transcription-dependent and orientation-specific differences in mutation rates of genes require the B. subtilis Y-family polymerase, PolY1 (yqjH). We find that without PolY1, association of the replicative helicase, DnaC, and the recombination protein, RecA, with lagging-strand genes increases in a transcription-dependent manner. These data suggest that PolY1 promotes efficient replisome progression through lagging-strand genes, thereby reducing potentially detrimental breaks and single-stranded DNA at these loci. Y-family polymerases can alleviate potential obstacles to replisome progression by facilitating DNA lesion bypass, extension of D-loops, or excision repair. We find that the nucleotide excision repair (NER) proteins UvrA, UvrB, and UvrC, but not RecA, are required for transcription-dependent asymmetry in mutation rates of genes in the two orientations. Furthermore, we find that the transcription-coupling repair factor Mfd functions in the same pathway as PolY1 and is also required for increased mutagenesis of lagging-strand genes. Experimental and SNP analyses of B. subtilis genomes show mutational footprints consistent with these findings. We propose that the interplay between replication and transcription increases lesion susceptibility of, specifically, lagging-strand genes, activating an Mfd-dependent error-prone NER mechanism. We propose that this process, at least partially, underlies the accelerated evolution of lagging-strand genes.


Asunto(s)
Bacillus subtilis/genética , Genes Bacterianos , Daño del ADN , Replicación del ADN , Mutagénesis , Transcripción Genética
6.
J Bacteriol ; 199(20)2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28760848

RESUMEN

Klebsiella pneumoniae and other carbapenem-resistant members of the family Enterobacteriaceae are a major cause of hospital-acquired infections, yet the basis of their success as nosocomial pathogens is poorly understood. To help provide a foundation for genetic analysis of K. pneumoniae, we created an arrayed, sequence-defined transposon mutant library of an isolate from the 2011 outbreak of infections at the U.S. National Institutes of Health Clinical Center. The library is made up of 12,000 individually arrayed mutants of a carbapenemase deletion parent strain and provides coverage of 85% of the predicted genes. The library includes an average of 2.5 mutants per gene, with most insertion locations identified and confirmed in two independent rounds of Sanger sequencing. On the basis of an independent transposon sequencing assay, about half of the genes lacking representatives in this "two-allele" library are essential for growth on nutrient agar. To validate the use of the library for phenotyping, we screened candidate mutants for increased antibiotic sensitivity by using custom phenotypic microarray plates. This screening identified several mutations increasing sensitivity to ß-lactams (in acrB1, mcrB, ompR, phoP1, and slt1) and found that two-component regulator cpxAR mutations increased multiple sensitivities (to an aminoglycoside, a fluoroquinolone, and several ß-lactams). Strains making up the two-allele mutant library are available through a web-based request mechanism.IMPORTANCE K. pneumoniae and other carbapenem-resistant members of the family Enterobacteriaceae are recognized as a top public health threat by the Centers for Disease Control and Prevention. The analysis of these major nosocomial pathogens has been limited by the experimental resources available for studying them. The work presented here describes a sequence-defined mutant library of a K. pneumoniae strain (KPNIH1) that represents an attractive model for studies of this pathogen because it is a recent isolate of the major sequence type that causes infection, the epidemiology of the outbreak it caused is well characterized, and an annotated genome sequence is available. The ready availability of defined mutants deficient in nearly all of the nonessential genes of the model strain should facilitate the genetic dissection of complex traits like pathogenesis and antibiotic resistance.

7.
J Bacteriol ; 197(12): 2027-35, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25845845

RESUMEN

UNLABELLED: Acinetobacter baumannii is a Gram-negative bacterial pathogen notorious for causing serious nosocomial infections that resist antibiotic therapy. Research to identify factors responsible for the pathogen's success has been limited by the resources available for genome-scale experimental studies. This report describes the development of several such resources for A. baumannii strain AB5075, a recently characterized wound isolate that is multidrug resistant and displays robust virulence in animal models. We report the completion and annotation of the genome sequence, the construction of a comprehensive ordered transposon mutant library, the extension of high-coverage transposon mutant pool sequencing (Tn-seq) to the strain, and the identification of the genes essential for growth on nutrient-rich agar. These resources should facilitate large-scale genetic analysis of virulence, resistance, and other clinically relevant traits that make A. baumannii a formidable public health threat. IMPORTANCE: Acinetobacter baumannii is one of six bacterial pathogens primarily responsible for antibiotic-resistant infections that have become the scourge of health care facilities worldwide. Eliminating such infections requires a deeper understanding of the factors that enable the pathogen to persist in hospital environments, establish infections, and resist antibiotics. We present a set of resources that should accelerate genome-scale genetic characterization of these traits for a reference isolate of A. baumannii that is highly virulent and representative of current outbreak strains.


Asunto(s)
Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/genética , Enfermedades Transmisibles Emergentes/microbiología , Genoma Bacteriano , Infecciones por Acinetobacter/epidemiología , Acinetobacter baumannii/clasificación , Enfermedades Transmisibles Emergentes/epidemiología , Elementos Transponibles de ADN/genética , ADN Bacteriano/genética , Biblioteca de Genes , Humanos , Mutación , Plásmidos
8.
Harefuah ; 154(8): 494-8, 541, 2015 Aug.
Artículo en Hebreo | MEDLINE | ID: mdl-26480612

RESUMEN

INTRODUCTION: Critical laboratory results require prompt reporting to the attending physician, as they may indicate that a patient is in a life-threatening condition. Although this important subject has been covered in many publications, it needs more attention from our healthcare organizations, which have no official policy on the subject. Matching expectations between the doctor and the laboratory needs to be better defined. PURPOSE: The aim of this work was to inform the community of doctors and laboratories about the multiple problems concerning the reporting of critical laboratory results, to create a platform for exchanging views and ideas, and to build an extensive infrastructure for developing a unified plan to address this important issue. METHODS: We present the results of four years of experience of reporting critical laboratory values at the Meir Medical Center Laboratories. The idea leading this work was to present the relatively low rate of critical results reported by the laboratories in 2010, sharing the problems discovered while investigating the situation in depth, and presenting the solutions that enabled us to obtain the desired results within four years. RESULTS: Gradual implementation of these improvements resulted in critical value reporting increasing from 55% in 2010 to 95% currently. CONCLUSION: We suggest a model for improving critical laboratory values reporting based on our 4-year experience, which emphasizes: (1) The importance of selecting proper tests and values for critical results; (2) The significance of using technology and computerized measures to support the process; and (3) Developing quick procedures for monitoring and controlling the process.


Asunto(s)
Técnicas de Laboratorio Clínico/normas , Laboratorios de Hospital/normas , Política Organizacional , Centros Médicos Académicos , Humanos , Israel , Laboratorios de Hospital/organización & administración , Médicos/organización & administración , Garantía de la Calidad de Atención de Salud
9.
BMC Genomics ; 15: 355, 2014 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-24886041

RESUMEN

BACKGROUND: Shigella dysenteriae type 1 (Sd1) causes recurrent epidemics of dysentery associated with high mortality in many regions of the world. Sd1 infects humans at very low infectious doses (10 CFU), and treatment is complicated by the rapid emergence of antibiotic resistant Sd1 strains. Sd1 is only detected in the context of human infections, and the circumstances under which epidemics emerge and regress remain unknown. RESULTS: Phylogenomic analyses of 56 isolates collected worldwide over the past 60 years indicate that the Sd1 clone responsible for the recent pandemics emerged at the turn of the 20th century, and that the two world wars likely played a pivotal role for its dissemination. Several lineages remain ubiquitous and their phylogeny indicates several recent intercontinental transfers. Our comparative genomics analysis reveals that isolates responsible for separate outbreaks, though closely related to one another, have independently accumulated antibiotic resistance genes, suggesting that there is little or no selection to retain these genes in-between outbreaks. The genomes appear to be subjected to genetic drift that affects a number of functions currently used by diagnostic tools to identify Sd1, which could lead to the potential failure of such tools. CONCLUSIONS: Taken together, the Sd1 population structure and pattern of evolution suggest a recent emergence and a possible human carrier state that could play an important role in the epidemic pattern of infections of this human-specific pathogen. This analysis highlights the important role of whole-genome sequencing in studying pathogens for which epidemiological or laboratory investigations are particularly challenging.


Asunto(s)
Disentería Bacilar/epidemiología , Shigella dysenteriae/genética , Antibacterianos/farmacología , Brotes de Enfermedades , Farmacorresistencia Bacteriana/efectos de los fármacos , Disentería Bacilar/historia , Evolución Molecular , Variación Genética , Genoma Bacteriano , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Historia del Siglo XX , Humanos , Filogenia , Análisis de Secuencia de ADN , Shigella dysenteriae/clasificación , Shigella dysenteriae/aislamiento & purificación
10.
Nat Med ; 26(2): 215-221, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31959989

RESUMEN

Most infants with cystic fibrosis (CF) have pancreatic exocrine insufficiency that results in nutrient malabsorption and requires oral pancreatic enzyme replacement. Newborn screening for CF has enabled earlier diagnosis, nutritional intervention and enzyme replacement for these infants, allowing most infants with CF to achieve their weight goals by 12 months of age1. Nevertheless, most infants with CF continue to have poor linear growth during their first year of life1. Although this early linear growth failure is associated with worse long-term respiratory function and survival2,3, the determinants of body length in infants with CF have not been defined. Several characteristics of the CF gastrointestinal (GI) tract, including inflammation, maldigestion and malabsorption, may promote intestinal dysbiosis4,5. As GI microbiome activities are known to affect endocrine functions6,7, the intestinal microbiome of infants with CF may also impact growth. We identified an early, progressive fecal dysbiosis that distinguished infants with CF and low length from infants with CF and normal length. This dysbiosis included altered abundances of taxa that perform functions that are important for GI health, nutrient harvest and growth hormone signaling, including decreased abundance of Bacteroidetes and increased abundance of Proteobacteria. Thus, the GI microbiota represent a potential therapeutic target for the correction of low linear growth in infants with CF.


Asunto(s)
Fibrosis Quística/microbiología , Disbiosis/microbiología , Heces/microbiología , Trastornos del Crecimiento/etiología , Tamaño Corporal , Estudios de Casos y Controles , Femenino , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Humanos , Lactante , Recién Nacido , Inflamación , Estudios Longitudinales , Masculino , Análisis Multivariante , Mutación , Tamizaje Neonatal , Estudios Prospectivos , Análisis de Secuencia de ADN
11.
Cell Rep ; 26(8): 2227-2240.e5, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30784601

RESUMEN

Metagenomic sequencing is a promising approach for identifying and characterizing organisms and their functional characteristics in complex, polymicrobial infections, such as airway infections in people with cystic fibrosis. These analyses are often hampered, however, by overwhelming quantities of human DNA, yielding only a small proportion of microbial reads for analysis. In addition, many abundant microbes in respiratory samples can produce large quantities of extracellular bacterial DNA originating either from biofilms or dead cells. We describe a method for simultaneously depleting DNA from intact human cells and extracellular DNA (human and bacterial) in sputum, using selective lysis of eukaryotic cells and endonuclease digestion. We show that this method increases microbial sequencing depth and, consequently, both the number of taxa detected and coverage of individual genes such as those involved in antibiotic resistance. This finding underscores the substantial impact of DNA from sources other than live bacteria in microbiological analyses of complex, chronic infection specimens.


Asunto(s)
Infecciones Bacterianas/microbiología , Código de Barras del ADN Taxonómico/métodos , Metagenoma , Metagenómica/métodos , Microbiota , Esputo/microbiología , Infecciones Bacterianas/diagnóstico , Humanos , Técnicas de Diagnóstico Molecular/métodos , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/microbiología
12.
Genome Biol Evol ; 8(12): 3696-3702, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28039230

RESUMEN

We previously discovered that lagging strand genes evolve faster in Bacillus subtilis (and potentially other bacteria). Lagging strand genes are transcribed in the head-on orientation with respect to DNA replication, leading to collisions between the two machineries that stall replication and can destabilize genomes. Our previous work indicated that the increased mutagenesis of head-on genes depends on transcription-coupled repair and the activity of an error prone polymerase which is likely activated in response to these collisions. Recently, it was proposed that sequence context is a major contributor to the increased mutagenesis and evolution of head-on genes. These models are based on laboratory-based evolution experiments performed in B. subtilis. However, critical evolutionary analyses of naturally occurring single nucleotide polymorphisms (SNPs) in wild strains were not performed. Using the genomic sequences from nine closely related wild B. subtilis strains, we analyzed over 200,000 naturally occurring SNPs as a proxy for natural mutation patterns for all genes and in particular, head-on genes. Our analysis suggests that (frame-independent) triplet sequence context can impact mutation rates: certain triplet sequences (TAG, CCC, CTA, and ACC) accumulate SNPs at a higher rate and are depleted from the genome. However, the triplet sequences previously identified as mutagenic in laboratory experiments (CCG, GCG, and CAC) do not have an elevated rate of SNP accumulation and are not depleted from the genome. Importantly, dN/dS analyses indicate that the accelerated evolution of head-on genes is not dependent on any particular triplet sequence. Thus, in agreement with our previous results, mutagenic transcription-coupled repair, rather than sequence context, is sufficient to explain the accelerated evolution of head-on genes.


Asunto(s)
Bacillus subtilis/genética , Replicación del ADN/genética , Evolución Molecular Dirigida , Genoma Bacteriano/genética , Bacillus subtilis/clasificación , Reparación del ADN/genética , Mutagénesis , Acumulación de Mutaciones , Tasa de Mutación , Polimorfismo de Nucleótido Simple
13.
PLoS One ; 11(7): e0158897, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27391011

RESUMEN

BACKGROUND: Comparative analysis of gut microbiomes in clinical studies of human diseases typically rely on identification and quantification of species or genes. In addition to exploring specific functional characteristics of the microbiome and potential significance of species diversity or expansion, microbiome similarity is also calculated to study change in response to therapies directed at altering the microbiome. Established ecological measures of similarity can be constructed from species abundances, however methods for calculating these commonly used ecological measures of similarity directly from whole genome shotgun (WGS) metagenomic sequence are lacking. RESULTS: We present an alignment-free method for calculating similarity of WGS metagenomic sequences that is analogous to the Bray-Curtis index for species, implemented by the General Utility for Testing Sequence Similarity (GUTSS) software application. This method was applied to intestinal microbiomes of healthy young children to measure developmental changes toward an adult microbiome during the first 3 years of life. We also calculate similarity of donor and recipient microbiomes to measure establishment, or engraftment, of donor microbiota in fecal microbiota transplantation (FMT) studies focused on mild to moderate Crohn's disease. We show how a relative index of similarity to donor can be calculated as a measure of change in a patient's microbiome toward that of the donor in response to FMT. CONCLUSION: Because clinical efficacy of the transplant procedure cannot be fully evaluated without analysis methods to quantify actual FMT engraftment, we developed a method for detecting change in the gut microbiome that is independent of species identification and database bias, sensitive to changes in relative abundance of the microbial constituents, and can be formulated as an index for correlating engraftment success with clinical measures of disease. More generally, this method may be applied to clinical evaluation of human microbiomes and provide potential diagnostic determination of individuals who may be candidates for specific therapies directed at alteration of the microbiome.


Asunto(s)
Enfermedad de Crohn , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal/genética , Donadores Vivos , Metagenoma , Metagenómica , Alineación de Secuencia , Adolescente , Adulto , Niño , Enfermedad de Crohn/genética , Enfermedad de Crohn/microbiología , Enfermedad de Crohn/terapia , Femenino , Humanos , Masculino
14.
Curr Biol ; 26(14): 1791-801, 2016 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-27345162

RESUMEN

Mutations in genes encoding autophagy proteins have been associated with human autoimmune diseases, suggesting that diversity in autophagy responses could be associated with disease susceptibility or severity. A cellular genome-wide association study (GWAS) screen was performed to explore normal human diversity in responses to rapamycin, a microbial product that induces autophagy. Cells from several human populations demonstrated variability in expression of a cell surface receptor, CD244 (SlamF4, 2B4), that correlated with changes in rapamycin-induced autophagy. High expression of CD244 and receptor activation with its endogenous ligand CD48 inhibited starvation- and rapamycin-induced autophagy by promoting association of CD244 with the autophagy complex proteins Vps34 and Beclin-1. The association of CD244 with this complex reduced Vps34 lipid kinase activity. Lack of CD244 is associated with auto-antibody production in mice, and lower expression of human CD244 has previously been implicated in severity of human rheumatoid arthritis and systemic lupus erythematosus, indicating that increased autophagy as a result of low levels of CD244 may alter disease outcomes.


Asunto(s)
Autofagia/genética , Expresión Génica , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/genética , Beclina-1/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo
15.
mBio ; 7(2): e00154, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26956590

RESUMEN

UNLABELLED: Salmonella enterica serovar Typhimurium is one of the most common S. enterica serovars associated with U.S. foodborne outbreaks. S. Typhimurium bacteria isolated from humans exhibit wide-ranging virulence phenotypes in inbred mice, leading to speculation that some strains are more virulent in nature. However, it is unclear whether increased virulence in humans is related to organism characteristics or initial treatment failure due to antibiotic resistance. Strain diversity and genetic factors contributing to differential human pathogenicity remain poorly understood. We reconstructed phylogeny, resolved genetic population structure, determined gene content and nucleotide variants, and conducted targeted phenotyping assays for S. Typhimurium strains collected between 1946 and 2012 from humans and animals in the United States and abroad. Strains from recent U.S. salmonellosis cases were associated with five S. Typhimurium lineages distributed within three phylogenetic clades, which are not restricted by geography, year of acquisition, or host. Notably, two U.S. strains and four Mexican strains are more closely related to strains associated with human immunodeficiency virus (HIV)-infected individuals in sub-Saharan Africa than to other North American strains. Phenotyping studies linked variants specific to these strains in hmpA and katE to loss of fitness under nitrosative and oxidative stress, respectively. These results suggest that U.S. salmonellosis is caused by diverse S. Typhimurium strains circulating worldwide. One lineage has mutations in genes affecting fitness related to innate immune system strategies for fighting pathogens and may be adapting to immunocompromised humans by a reduction in virulence capability, possibly due to a lack of selection for its maintenance as a result of the worldwide HIV epidemic. IMPORTANCE: Nontyphoidal Salmonella bacteria cause an estimated 1.2 million illnesses annually in the United States, 80 million globally, due to ingestion of contaminated food or water. Salmonella Typhimurium is one of the most common serovars associated with foodborne illness, causing self-limiting gastroenteritis and, in approximately 5% of infected patients, systemic infection. Although some S. Typhimurium strains are speculated to be more virulent than others, it is unknown how strain diversity and genetic factors contribute to differential human pathogenicity. Ours is the first study to examine the diversity of S. Typhimurium associated with recent cases of U.S. salmonellosis and to provide some initial correlation between observed genotypes and phenotypes. Definition of specific S. Typhimurium lineages based on such phenotype/genotype correlations may identify strains with greater capability of associating with specific food sources, allowing outbreaks to be more quickly identified. Additionally, defining simple correlates of pathogenesis may have predictive value for patient outcome.


Asunto(s)
Variación Genética , Compuestos Nitrosos/toxicidad , Oxidantes/toxicidad , Salmonelosis Animal/microbiología , Infecciones por Salmonella/microbiología , Salmonella typhimurium/efectos de los fármacos , Estrés Fisiológico , Animales , Proteínas Bacterianas/genética , Enfermedades Transmitidas por los Alimentos/microbiología , Ratones , Mutación , Estrés Oxidativo , Filogeografía , Salmonella typhimurium/clasificación , Salmonella typhimurium/genética , Salmonella typhimurium/aislamiento & purificación , Estados Unidos
16.
J Perinatol ; 22(7): 550-4, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12368971

RESUMEN

OBJECTIVE: To assess the effect of daily movements on weight gain, serum leptin, and insulin-like growth factor I (IGF-I) in premature infants. STUDY DESIGN: Twenty very-low-birth-weight premature infants were matched and randomized to a daily movement (n = 10) and control groups (n = 10). Daily movement consisted of passive range of motion with gentle compression of both the upper and lower extremities 5 days per week for 4 weeks. RESULTS: Daily movements led to a significant increase in weight gain (784 +/- 51 vs 608 +/- 26 g in movements and controls, respectively, p < 0.02), and to a significant increase in leptin (0.60 +/- 0.19 vs 0.13 +/- 0.06 ng/ml in movements and controls, respectively 18.8 +/- 4.1 vs 9.2 +/- 4.1 ng/ml in movements and controls, respectively); however, this increase was not statistically significant. CONCLUSION: A relatively brief range of motion daily movement intervention was associated with greater weight gain and increased leptin levels in very-low-birth-weight premature infants. This may suggest that at least part of the daily movements associated with increase in body weight resulted from an increase in adipose tissue.


Asunto(s)
Recien Nacido Prematuro/fisiología , Recién Nacido de muy Bajo Peso/fisiología , Leptina/sangre , Movimiento/fisiología , Densidad Ósea , Femenino , Humanos , Recién Nacido , Factor I del Crecimiento Similar a la Insulina/análisis , Masculino , Aumento de Peso/fisiología
17.
mBio ; 4(6): e00604-13, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24194535

RESUMEN

UNLABELLED: We constructed a near-saturation transposon mutant library for Burkholderia thailandensis, a low-virulence surrogate for the causative agent of melioidosis (Burkholderia pseudomallei). A primary set of nearly 42,000 unique mutants (~7.5 mutants/gene) was generated using transposon Tn5 derivatives. The strains carry insertions in 87% of the predicted protein-coding genes of the organism, corresponding to nearly all of those nonessential for growth on nutrient agar. To achieve high genome coverage, we developed procedures for efficient sequence identification of insertions in extremely GC-rich regions of DNA. To facilitate strain distribution, we created a secondary library with two mutants per gene for which most transposon locations had been confirmed by resequencing. A map of mutations in the two-allele library and procedures for obtaining strains can be found at http://tools.nwrce.org/tn_mutants/ and http://www.gs.washington.edu/labs/manoil/. The library should facilitate comprehensive mutant screens and serve as a source of strains to test predicted genotype-phenotype associations. IMPORTANCE: The Gram-negative bacterium Burkholderia pseudomallei is a biothreat agent due to its potential for aerosol delivery and intrinsic antibiotic resistance and because exposure produces pernicious infections. Large-scale studies of B. pseudomallei are limited by the fact that the organism must be manipulated under biological safety level 3 conditions. A close relative of B. pseudomallei called Burkholderia thailandensis, which can be studied under less restrictive conditions, has been validated as a low-virulence surrogate in studies of virulence, antibiotic resistance and other traits. To facilitate large-scale studies of B. thailandensis, we created a near-saturation, sequence-defined transposon mutant library of the organism. The library facilitates genetic studies that identify genotype-phenotype associations conserved in B. pseudomallei.


Asunto(s)
Burkholderia/genética , Elementos Transponibles de ADN , Biblioteca de Genes , Genética Microbiana/métodos , Biología Molecular/métodos , Mutagénesis Insercional , ADN Bacteriano/química , ADN Bacteriano/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA