Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 75(8): 2385-2402, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38330219

RESUMEN

Flowering time and plant height are two critical determinants of yield potential in barley (Hordeum vulgare). Despite their role in plant physiological regulation, a complete overview of the genetic complexity of flowering time and plant height regulation in barley is still lacking. Using a double round-robin population originated from the crossings of 23 diverse parental inbred lines, we aimed to determine the variance components in the regulation of flowering time and plant height in barley as well as to identify new genetic variants by single and multi-population QTL analyses and allele mining. Despite similar genotypic variance, we observed higher environmental variance components for plant height than flowering time. Furthermore, we detected new QTLs for flowering time and plant height. Finally, we identified a new functional allelic variant of the main regulatory gene Ppd-H1. Our results show that the genetic architecture of flowering time and plant height might be more complex than reported earlier and that a number of undetected, small effect, or low-frequency genetic variants underlie the control of these two traits.


Asunto(s)
Hordeum , Hordeum/genética , Alelos , Mapeo Cromosómico , Sitios de Carácter Cuantitativo/genética , Genotipo , Fenotipo
2.
Genomics ; 115(2): 110568, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36702293

RESUMEN

It has recently been shown that structural variants (SV) can have a higher impact on gene expression variation compared to single nucleotide variants (SNV) in different plant species. Additionally, SV were associated with phenotypic variation in several crops. However, compared to the established SV detection based on short-read sequencing, less approaches were described for linked-read based SV calling. We therefore evaluated the performance of six linked-read SV callers compared to an established short-read SV caller based on simulated linked-reads in tetraploid potato. The objectives of our study were to i) compare the performance of SV callers based on linked-read sequencing to short-read sequencing, ii) examine the influence of SV type, SV length, haplotype incidence (HI), as well as sequencing coverage on the SV calling performance in the tetraploid potato genome, and iii) evaluate the accuracy of detecting insertions by linked-read compared to short-read sequencing. We observed high break point resolutions (BPR) detecting short SV and slightly lower BPR for large SV. Our observations highlighted the importance of short-read signals provided by Manta and LinkedSV to detect short SV. Manta and NAIBR performed well for detecting larger deletions, inversions, and duplications. Detected large SV were weakly influenced by the HI. Furthermore, we illustrated that large insertions can be assembled by Novel-X. Our results suggest the usage of the short-read and linked-read SV callers Manta, NAIBR, LinkedSV, and Novel-X based on at least 90x linked-read sequencing coverage to ensure the detection of a broad range of SV in the tetraploid potato genome.


Asunto(s)
Solanum tuberosum , Análisis de Secuencia de ADN/métodos , Solanum tuberosum/genética , Benchmarking , Tetraploidía , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento
3.
BMC Genomics ; 23(1): 200, 2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35279073

RESUMEN

BACKGROUND: Genomic prediction (GP) based on single nucleotide polymorphisms (SNP) has become a broadly used tool to increase the gain of selection in plant breeding. However, using predictors that are biologically closer to the phenotypes such as transcriptome and metabolome may increase the prediction ability in GP. The objectives of this study were to (i) assess the prediction ability for three yield-related phenotypic traits using different omic datasets as single predictors compared to a SNP array, where these omic datasets included different types of sequence variants (full-SV, deleterious-dSV, and tolerant-tSV), different types of transcriptome (expression presence/absence variation-ePAV, gene expression-GE, and transcript expression-TE) sampled from two tissues, leaf and seedling, and metabolites (M); (ii) investigate the improvement in prediction ability when combining multiple omic datasets information to predict phenotypic variation in barley breeding programs; (iii) explore the predictive performance when using SV, GE, and ePAV from simulated 3'end mRNA sequencing of different lengths as predictors. RESULTS: The prediction ability from genomic best linear unbiased prediction (GBLUP) for the three traits using dSV information was higher than when using tSV, all SV information, or the SNP array. Any predictors from the transcriptome (GE, TE, as well as ePAV) and metabolome provided higher prediction abilities compared to the SNP array and SV on average across the three traits. In addition, some (di)-similarity existed between different omic datasets, and therefore provided complementary biological perspectives to phenotypic variation. Optimal combining the information of dSV, TE, ePAV, as well as metabolites into GP models could improve the prediction ability over that of the single predictors alone. CONCLUSIONS: The use of integrated omic datasets in GP model is highly recommended. Furthermore, we evaluated a cost-effective approach generating 3'end mRNA sequencing with transcriptome data extracted from seedling without losing prediction ability in comparison to the full-length mRNA sequencing, paving the path for the use of such prediction methods in commercial breeding programs.


Asunto(s)
Hordeum , Genómica/métodos , Hordeum/genética , Modelos Genéticos , Fenotipo , Fitomejoramiento
4.
Plant Biotechnol J ; 20(4): 676-690, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34783155

RESUMEN

Meiotic recombination is not only fundamental to the adaptation of sexually reproducing eukaryotes in nature but increased recombination rates facilitate the combination of favourable alleles into a single haplotype in breeding programmes. The main objectives of this study were to (i) assess the extent and distribution of the recombination rate variation in cultivated barley (Hordeum vulgare L.), (ii) quantify the importance of the general and specific recombination effects, and (iii) evaluate a genomic selection approach's ability to predict the recombination rate variation. Genetic maps were created for the 45 segregating populations that were derived from crosses among 23 spring barley inbreds with origins across the world. The genome-wide recombination rate among populations ranged from 0.31 to 0.73 cM/Mbp. The crossing design used in this study allowed to separate the general recombination effects (GRE) of individual parental inbreds from the specific recombination effects (SRE) caused by the combinations of parental inbreds. The variance of the genome-wide GRE was found to be about eight times the variance of the SRE. This finding indicated that parental inbreds differ in the efficiency of their recombination machinery. The ability to predict the chromosome or genome-wide recombination rate of an inbred ranged from 0.80 to 0.85. These results suggest that a reliable screening of large genetic materials for their potential to cause a high extent of genetic recombination in their progeny is possible, allowing to systematically manipulate the recombination rate using natural variation.


Asunto(s)
Hordeum , Cruzamientos Genéticos , Genómica/métodos , Genotipo , Hordeum/genética , Fitomejoramiento
5.
J Exp Bot ; 73(22): 7344-7361, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36094852

RESUMEN

Grain number, size and weight primarily determine the yield of barley. Although the genes regulating grain number are well studied in barley, the genetic loci and the causal gene for sink capacity are poorly understood. Therefore, the primary objective of our work was to dissect the genetic architecture of grain size and weight in barley. We used a multi-parent population developed from a genetic cross between 23 diverse barley inbreds in a double round-robin design. Seed size-related parameters such as grain length, grain width, grain area and thousand-grain weight were evaluated in the HvDRR population comprising 45 recombinant inbred line sub-populations. We found significant genotypic variation for all seed size characteristics, and observed 84% or higher heritability across four environments. The quantitative trait locus (QTL) detection results indicate that the genetic architecture of grain size is more complex than previously reported. In addition, both cultivars and landraces contributed positive alleles at grain size QTLs. Candidate genes identified using genome-wide variant calling data for all parental inbred lines indicated overlapping and potential novel regulators of grain size in cereals. Furthermore, our results indicated that sink capacity was the primary determinant of grain weight in barley.


Asunto(s)
Hordeum , Hordeum/genética
6.
Theor Appl Genet ; 135(10): 3511-3529, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36029318

RESUMEN

KEY MESSAGE: Structural variants (SV) of 23 barley inbreds, detected by the best combination of SV callers based on short-read sequencing, were associated with genome-wide and gene-specific gene expression and, thus, were evaluated to predict agronomic traits. In human genetics, several studies have shown that phenotypic variation is more likely to be caused by structural variants (SV) than by single nucleotide variants. However, accurate while cost-efficient discovery of SV in complex genomes remains challenging. The objectives of our study were to (i) facilitate SV discovery studies by benchmarking SV callers and their combinations with respect to their sensitivity and precision to detect SV in the barley genome, (ii) characterize the occurrence and distribution of SV clusters in the genomes of 23 barley inbreds that are the parents of a unique resource for mapping quantitative traits, the double round robin population, (iii) quantify the association of SV clusters with transcript abundance, and (iv) evaluate the use of SV clusters for the prediction of phenotypic traits. In our computer simulations based on a sequencing coverage of 25x, a sensitivity > 70% and precision > 95% was observed for all combinations of SV types and SV length categories if the best combination of SV callers was used. We observed a significant (P < 0.05) association of gene-associated SV clusters with global gene-specific gene expression. Furthermore, about 9% of all SV clusters that were within 5 kb of a gene were significantly (P < 0.05) associated with the gene expression of the corresponding gene. The prediction ability of SV clusters was higher compared to that of single-nucleotide polymorphisms from an array across the seven studied phenotypic traits. These findings suggest the usefulness of exploiting SV information when fine mapping and cloning the causal genes underlying quantitative traits as well as the high potential of using SV clusters for the prediction of phenotypes in diverse germplasm sets.


Asunto(s)
Hordeum , Variación Biológica Poblacional , Expresión Génica , Pool de Genes , Hordeum/genética
7.
BMC Genomics ; 20(1): 787, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31664921

RESUMEN

BACKGROUND: Barley is the world's fourth most cultivated cereal and is an important crop model for genetic studies. One layer of genomic information that remains poorly explored in barley is presence/absence variation (PAV), which has been suggested to contribute to phenotypic variation of agronomic importance in various crops. RESULTS: An mRNA sequencing approach was used to study genomic PAV and transcriptomic variation in 23 spring barley inbreds. 1502 new genes identified here were physically absent from the Morex reference sequence, and 11,523 previously unannotated genes were not expressed in Morex. The procedure applied to detect expression PAV revealed that more than 50% of all genes of our data set are not expressed in all inbreds. Interestingly, expression PAV were not in strong linkage disequilibrium with neighboring sequence variants (SV), and therefore provided an additional layer of genetic information. Optimal combinations of expression PAV, SV, and gene abundance data could enhance the prediction accuracy of predicting three different agronomic traits. CONCLUSIONS: Our results highlight the advantage of mRNA sequencing for genomic prediction over other technologies, as it allows extracting multiple layers of genomic data from a single sequencing experiment. Finally, we propose low coverage mRNA sequencing based characterization of breeding material harvested as seedlings in petri dishes as a powerful and cost efficient approach to replace current single nucleotide polymorphism (SNP) based characterizations.


Asunto(s)
Hordeum/genética , Transcriptoma , Perfilación de la Expresión Génica , Variación Genética , Genoma de Planta , Desequilibrio de Ligamiento , Fenotipo , ARN Mensajero/química , Análisis de Secuencia de ARN
8.
G3 (Bethesda) ; 11(12)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34534288

RESUMEN

Potato (Solanum tuberosum L.) is one of the most important crops with a worldwide production of 370 million metric tons. The objectives of this study were (1) to create a high-quality consensus sequence across the two haplotypes of a diploid clone derived from a tetraploid elite variety and assess the sequence divergence from the available potato genome assemblies, as well as among the two haplotypes; (2) to evaluate the new assembly's usefulness for various genomic methods; and (3) to assess the performance of phasing in diploid and tetraploid clones, using linked-read sequencing technology. We used PacBio long reads coupled with 10x Genomics reads and proximity ligation scaffolding to create the dAg1_v1.0 reference genome sequence. With a final assembly size of 812 Mb, where 750 Mb are anchored to 12 chromosomes, our assembly is larger than other available potato reference sequences and high proportions of properly paired reads were observed for clones unrelated by pedigree to dAg1. Comparisons of the new dAg1_v1.0 sequence to other potato genome sequences point out the high divergence between the different potato varieties and illustrate the potential of using dAg1_v1.0 sequence in breeding applications.


Asunto(s)
Solanum tuberosum , Cromosomas , Células Clonales , Diploidia , Fitomejoramiento , Solanum tuberosum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA