Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Commun ; 14(1): 5053, 2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598178

RESUMEN

Brain exposure of systemically administered biotherapeutics is highly restricted by the blood-brain barrier (BBB). Here, we report the engineering and characterization of a BBB transport vehicle targeting the CD98 heavy chain (CD98hc or SLC3A2) of heterodimeric amino acid transporters (TVCD98hc). The pharmacokinetic and biodistribution properties of a CD98hc antibody transport vehicle (ATVCD98hc) are assessed in humanized CD98hc knock-in mice and cynomolgus monkeys. Compared to most existing BBB platforms targeting the transferrin receptor, peripherally administered ATVCD98hc demonstrates differentiated brain delivery with markedly slower and more prolonged kinetic properties. Specific biodistribution profiles within the brain parenchyma can be modulated by introducing Fc mutations on ATVCD98hc that impact FcγR engagement, changing the valency of CD98hc binding, and by altering the extent of target engagement with Fabs. Our study establishes TVCD98hc as a modular brain delivery platform with favorable kinetic, biodistribution, and safety properties distinct from previously reported BBB platforms.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Animales , Ratones , Distribución Tisular , Anticuerpos , Ingeniería , Macaca fascicularis
2.
Sci Transl Med ; 12(545)2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32461332

RESUMEN

Effective delivery of protein therapeutics to the central nervous system (CNS) has been greatly restricted by the blood-brain barrier (BBB). We describe the development of a BBB transport vehicle (TV) comprising an engineered Fc fragment that exploits receptor-mediated transcytosis for CNS delivery of biotherapeutics by binding a highly expressed brain endothelial cell target. TVs were engineered using directed evolution to bind the apical domain of the human transferrin receptor (hTfR) without the use of amino acid insertions, deletions, or unnatural appendages. A crystal structure of the TV-TfR complex revealed the TV binding site to be away from transferrin and FcRn binding sites, which was further confirmed experimentally in vitro and in vivo. Recombinant expression of TVs fused to anti-ß-secretase (BACE1) Fabs yielded antibody transport vehicle (ATV) molecules with native immunoglobulin G (IgG) structure and stability. Peripheral administration of anti-BACE1 ATVs to hTfR-engineered mice and cynomolgus monkeys resulted in substantially improved CNS uptake and sustained pharmacodynamic responses. The TV platform readily accommodates numerous additional configurations, including bispecific antibodies and protein fusions, yielding a highly modular CNS delivery platform.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Barrera Hematoencefálica , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Haplorrinos/metabolismo , Fragmentos Fc de Inmunoglobulinas , Ratones , Receptores de Transferrina/metabolismo
3.
Sci Transl Med ; 12(545)2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32461331

RESUMEN

Most lysosomal storage diseases (LSDs) involve progressive central nervous system (CNS) impairment, resulting from deficiency of a lysosomal enzyme. Treatment of neuronopathic LSDs remains a considerable challenge, as approved intravenously administered enzyme therapies are ineffective in modifying CNS disease because they do not effectively cross the blood-brain barrier (BBB). We describe a therapeutic platform for increasing the brain exposure of enzyme replacement therapies. The enzyme transport vehicle (ETV) is a lysosomal enzyme fused to an Fc domain that has been engineered to bind to the transferrin receptor, which facilitates receptor-mediated transcytosis across the BBB. We demonstrate that ETV fusions containing iduronate 2-sulfatase (ETV:IDS), the lysosomal enzyme deficient in mucopolysaccharidosis type II, exhibited high intrinsic activity and degraded accumulated substrates in both IDS-deficient cell and in vivo models. ETV substantially improved brain delivery of IDS in a preclinical model of disease, enabling enhanced cellular distribution to neurons, astrocytes, and microglia throughout the brain. Improved brain exposure for ETV:IDS translated to a reduction in accumulated substrates in these CNS cell types and peripheral tissues and resulted in a complete correction of downstream disease-relevant pathologies in the brain, including secondary accumulation of lysosomal lipids, perturbed gene expression, neuroinflammation, and neuroaxonal damage. These data highlight the therapeutic potential of the ETV platform for LSDs and provide preclinical proof of concept for TV-enabled therapeutics to treat CNS diseases more broadly.


Asunto(s)
Barrera Hematoencefálica , Iduronato Sulfatasa , Animales , Encéfalo , Modelos Animales de Enfermedad , Terapia de Reemplazo Enzimático , Lisosomas , Ratones
5.
Virology ; 428(2): 112-20, 2012 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-22521915

RESUMEN

The predominant tumor cell of Kaposi's Sarcoma (KS) is the spindle cell, a cell of endothelial origin that expresses markers of lymphatic endothelium. In culture, Kaposi's Sarcoma-associated herpesvirus (KSHV) infection of blood endothelial cells drives expression of lymphatic endothelial cell specific markers, in a process that requires activation of the gp130 receptor and the JAK2/STAT3 and PI3K/AKT signaling pathways. While expression of each of the KSHV major latent genes in endothelial cells failed to increase expression of lymphatic markers, the viral homolog of human IL-6 (vIL-6) was sufficient for induction and requires the JAK2/STAT3 and PI3K/AKT pathways. Therefore, activation of gp130 and downstream signaling by vIL-6 is sufficient to drive blood to lymphatic endothelial cell differentiation. While sufficient, vIL-6 is not necessary for lymphatic reprogramming in the context of viral infection. This indicates that multiple viral genes are involved and suggests a central importance of this pathway to KSHV pathogenesis.


Asunto(s)
Células Sanguíneas/citología , Diferenciación Celular , Células Endoteliales/citología , Herpesvirus Humano 8/metabolismo , Interleucina-6/metabolismo , Sarcoma de Kaposi/fisiopatología , Proteínas Virales/metabolismo , Células Sanguíneas/metabolismo , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Células Endoteliales/metabolismo , Herpesvirus Humano 8/genética , Humanos , Interleucina-6/genética , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/virología , Transducción de Señal , Proteínas Virales/genética
6.
PLoS One ; 6(6): e21384, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21738650

RESUMEN

Every lipid membrane fission event involves the association of two apposing bilayers, mediated by proteins that can promote membrane curvature, fusion and fission. We tested the hypothesis that Fis1, a tail-anchored protein involved in mitochondrial and peroxisomal fission, promotes changes in membrane structure. We found that the cytosolic domain of Fis1 alone binds lipid vesicles, which is enhanced upon protonation and increasing concentrations of anionic phospholipids. Fluorescence and circular dichroism data indicate that the cytosolic domain undergoes a membrane-induced conformational change that buries two tryptophan side chains upon membrane binding. Light scattering and electron microscopy data show that membrane binding promotes lipid vesicle clustering. Remarkably, this vesicle clustering is reversible and vesicles largely retain their original shape and size. This raises the possibility that the Fis1 cytosolic domain might act in membrane fission by promoting a reversible membrane association, a necessary step in membrane fission.


Asunto(s)
Citosol/metabolismo , Lípidos de la Membrana/química , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Dicroismo Circular , Microscopía Electrónica , Proteínas Mitocondriales/química , Proteínas Mitocondriales/ultraestructura , Unión Proteica , Proteínas de Saccharomyces cerevisiae/ultraestructura
7.
Protein Sci ; 20(1): 62-74, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21031486

RESUMEN

Bcl-2 proteins associate with and remodel mitochondria to regulate apoptosis. While the C. elegans Bcl-2 homolog CED-9 constitutively associates with mitochondria, it is unclear whether or not this association reflects an innate ability of CED-9 to directly remodel mitochondrial membranes. To address this question, we have characterized the effects of recombinantly expressed and purified CED-9 on synthetic lipid vesicles. We found that CED-9 associates with anionic lipid vesicles at neutral pH, and that association can occur independently of the C-terminal transmembrane domain. Membrane association changes the environment of CED-9 tryptophans and results in an apparent increase in α-helical structure. Upon association, CED-9 alters the permeability of membranes resulting in leakage of encapsulated dyes. Furthermore, this membrane remodeling promotes membrane fusion upon protonation of CED-9. Bypass of this protonation trigger can be achieved by mutating two conserved glutamates (E187K/E190K) or removing the N-terminal 67 residues. Together, these in vitro results suggest that CED-9 retains the amphitropic ability of mammalian Bcl-2 proteins to associate with cellular membranes. We therefore discuss the possibility that CED-9 and other Bcl-2 homologs localize at mitochondria to regulate mitochondrial homeostasis by either modulating mitochondrial membrane permeability or fusion.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Liposomas/química , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Proteínas de Caenorhabditis elegans/química , Humanos , Concentración de Iones de Hidrógeno , Fusión de Membrana , Permeabilidad , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas c-bcl-2/química
8.
J Biol Chem ; 282(46): 33769-33775, 2007 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-17884824

RESUMEN

Recruitment of a dynamin-like GTPase (Drp1/Dlp1/Dnm1) to membranes requires the mitochondrial dynamics protein Fis1. Mdv1 has been proposed to act as an adaptor between Fis1 and Dnm1 in Saccharomyces cerevisiae. We show that S. cerevisiae Fis1 binds directly to Dnm1 and to Mdv1. Two Fis1 regions have been previously implicated in Mdv1 recruitment: an N-terminal "arm" and a concave surface formed by evolutionarily conserved residues in the tetratricopeptide repeat domain. Perturbing either Fis1 region does not affect Mdv1 binding, but both regions influence Dnm1 binding. Fis1 lacking its N-terminal arm binds tightly to Dnm1, and binding is abolished by mutations to the Fis1 concave surface. The Fis1-Dnm1 interaction decreases more than 100-fold in the presence of the Fis1 arm, suggesting that the arm acts in an autoinhibitory manner to restrict access to the Dnm1 binding site on Fis1. Our data indicate that the concave surface of the Fis1 tetratricopeptide repeat-like domain is evolutionarily conserved to bind the dynamin-like GTPase Dnm1 and not Mdv1 as previously predicted.


Asunto(s)
Proteínas Portadoras/metabolismo , Dinaminas/fisiología , GTP Fosfohidrolasas/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Sitios de Unión , Proteínas Portadoras/química , Dinaminas/química , Evolución Molecular , Proteínas Fúngicas/química , GTP Fosfohidrolasas/química , Proteínas Mitocondriales/química , Modelos Moleculares , Conformación Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
9.
Per Med ; 6(3): 235-239, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-29783505
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA