RESUMEN
As a single nitrogen source, ammonium (NH4+) can inhibit the growth of plants, especially when applied in excess. Tandem mass tag (TMT) quantitative proteomics technology was employed in the current study to explore and analyze the mechanisms of ammonium-induced inhibition. F1 tomato (Lycopersicon esculentum Mill) was used in this study. Seedlings at the four leaf-stages grown in a greenhouse were irrigated using nutrient solution with NH4+-N as single nitrogen source (15 mmol L-1, single NO3--N as control) for 5 weeks. Compared to the control, the root biomass of NH4+-N-treated seedlings decreased by 50%. In addition, NH4+ content in roots was 2.83-fold increased and soluble sugar and protein contents were increased. However, the starch content did not change significantly. The activities of glutamine synthetase (GS), glutamate synthetase (GOGAT) and glutamate dehydrogenase (GDH), which are involved in ammonium assimilation, were increased, and glutamine (Gln) content was also increased. However, glutamate (Glu) content, which is important for amino transfer, did not significantly increase. Ammonium assimilation was inhibited. Root quantitative proteomics showed that carbonic anhydrase Q5NE21 was significantly downregulated. Although K4BPV5 and K4D9J3 proteins, which improve ammonium assimilation, were upregulated, ammonium assimilation was limited. In addition, NH4+ accumulated, which is likely due to Q5NE21 downregulation. Meanwhile, cell wall metabolism related to phenylpropanoid biosynthesis was altered due to the accumulation of NH4+ levels. Subsequently, tomato root growth was inhibited.
Asunto(s)
Compuestos de Amonio/farmacología , Nitrógeno/farmacología , Solanum lycopersicum/efectos de los fármacos , Anhidrasas Carbónicas , Regulación de la Expresión Génica de las Plantas , Glutamato Deshidrogenasa , Glutamato-Amoníaco Ligasa , Solanum lycopersicum/crecimiento & desarrollo , Nitratos/farmacología , Raíces de Plantas , ProteómicaRESUMEN
Understanding the wavelength dependence of plant responses is essential for optimizing production and quality of indoor plant cultivation. UVA is the main component of solar UV radiation, but its role on plant growth is poorly understood. Here, two experiments were conducted to examine whether UVA supplementation is beneficial for indoor plant cultivation. Lettuce (Lactuca sativa L. cv. "Klee") was grown under mixed blue, red, and far-red light with photon flux density of 237 µmol m-2 s-1 in the growth room; photoperiod was 16 h. In the first experiment, three UVA intensities with peak wavelengths at 365 nm were used: 10 (UVA-10), 20 (UVA-20), and 30 (UVA-30) µmol m-2 s-1, respectively. In the second experiment, 10 µmol m-2 s-1 UVA radiation were given for 5 (UVA-5d), 10 (UVA-10d), and 15 (UVA-15d) days before harvest on day 15, respectively. Compared with control (no UVA), shoot dry weight was increased by 27%, 29%, and 15% in the UVA-10, UVA-20, and UVA-30 treatments, respectively, which correlated with 31% (UVA-10), 32% (UVA-20), and 14% (UVA-30) larger leaf area. Shoot dry weight under the treatments of UVA-5d, UVA-10d, and UVA-15d was increased by 18%, 32%, and 30%, respectively, and leaf area was increased by 15%-26%. For both experiments, UVA radiation substantially enhanced secondary metabolites accumulation, e.g. anthocyanin and ascorbic acid contents were increased by 17%-49% and 47%-80%, respectively. Moreover, plants grown under the UVA-30 treatment were stressed, as indicated by lipid peroxidation and lower maximum quantum efficiency of photosystem II photochemistry (Fv/Fm). We conclude that UVA supplementation not only stimulates biomass production in controlled environments, but also enhances secondary metabolite accumulation.
RESUMEN
Iron is essential for the growth and survival of many organisms. Intracellular iron homeostasis must be maintained for cell survival and protection against iron toxicity. The ferric uptake regulator protein (Fur) regulates the high-affinity ferric uptake system in many bacteria. To investigate the function of the fur gene in Xanthomonas vesicatoria (Xv), we generated a fur mutant strain, fur-m, by site-directed mutagenesis. Whereas siderophore production increased in the Xv fur mutant, extracellular polysaccharide production, biofilm formation, swimming ability and quorum sensing signals were all significantly decreased. The fur mutant also had significantly reduced virulence in tomato leaves. The above-mentioned phenotypes significantly recovered when the Xv fur mutation allele was complemented with a wild-type fur gene. Thus, Fur either negatively or positively regulates multiple important physiological functions in Xv.