Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Plant Cell Rep ; 43(6): 160, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38825616

RESUMEN

KEY MESSAGE: LeBAHD56 is preferentially expressed in tissues where shikonin and its derivatives are biosynthesized, and it confers shikonin acylation in vivo. Two WRKY transcriptional factors might regulate LeBAHD56's expression. Shikonin and its derivatives, found in the roots of Lithospermum erythrorhizon, have extensive application in the field of medicine, cosmetics, and other industries. Prior research has demonstrated that LeBAHD1(LeSAT1) is responsible for the biochemical process of shikonin acylation both in vitro and in vivo. However, with the exception of its documented in vitro biochemical function, there is no in vivo genetic evidence supporting the acylation function of the highly homologous gene of LeSAT1, LeBAHD56(LeSAT2), apart from its reported role. Here, we validated the critical acylation function of LeBAHD56 for shikonin using overexpression (OE) and CRISPR/Cas9-based knockout (KO) strategies. The results showed that the OE lines had a significantly higher ratio of acetylshikonin, isobutyrylshikonin or isovalerylshikonin to shikonin than the control. In contrast, the KO lines had a significantly lower ratio of acetylshikonin, isobutyrylshikonin or isovalerylshikonin to shikonin than controls. As for its detailed expression patterns, we found that LeBAHD56 is preferentially expressed in roots and callus cells, which are the biosynthesis sites for shikonin and its derivatives. In addition, we anticipated that a wide range of putative transcription factors might control its transcription and verified the direct binding of two crucial WRKY members to the LeBAHD56 promoter's W-box. Our results not only confirmed the in vivo function of LeBAHD56 in shikonin acylation, but also shed light on its transcriptional regulation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lithospermum , Naftoquinonas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Naftoquinonas/metabolismo , Lithospermum/genética , Lithospermum/metabolismo , Acilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Sistemas CRISPR-Cas , Antraquinonas
2.
Bioorg Chem ; 139: 106703, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37399615

RESUMEN

Warburg effect provides energy and material essential for tumor proliferation, the reverse of Warburg effect provides insights into the development of a novel anti-cancer strategy. Pyruvate kinase 2 (PKM2) and pyruvate dehydrogenase kinase 1 (PDK1) are two key enzymes in tumor glucose metabolism pathway that not only contribute to the Warburg effect through accelerating aerobic glycolysis, but also serve as druggable target for colorectal cancer (CRC). Considering that targeting PKM2 or PDK1 alone does not seem to be sufficient to remodel abnormal glucose metabolism and achieve significant antitumor activity, a series of novel benzenesulfonyl shikonin derivatives were designed to regulate PKM2 and PDK1 simultaneously. By means of molecular docking and antiproliferative screen, we found that compound Z10 could act as the combination of PKM2 activator and PDK1 inhibitor, thereby significantly inhibited glycolysis that reshaping tumor metabolism. Moreover, Z10 could inhibit proliferation, migration and induce apoptosis in CRC cell HCT-8. Finally, the in vivo anti-tumor activity of Z10 was evaluated in a colorectal cancer cell xenograft model in nude mice and the results demonstrated that Z10 induced tumor cell apoptosis and inhibited tumor cell proliferation with lower toxicity than shikonin. Our findings indicated that it is feasible to alter tumor energy metabolism through multi-target synergies, and the dual-target benzenesulfonyl shikonin derivative Z10 could be a potential anti-CRC agent.


Asunto(s)
Neoplasias Colorrectales , Piruvato Quinasa , Animales , Ratones , Humanos , Ratones Desnudos , Simulación del Acoplamiento Molecular , Proliferación Celular , Piruvato Quinasa/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Glucosa/metabolismo , Línea Celular Tumoral
3.
Int J Mol Sci ; 24(15)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37569907

RESUMEN

3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), as the rate-limiting enzyme in the mevalonate pathway, is essential for the biosynthesis of shikonin in Lithospermum erythrorhizon. However, in the absence of sufficient data, the principles of a genome-wide in-depth evolutionary exploration of HMGR family members in plants, as well as key members related to shikonin biosynthesis, remain unidentified. In this study, 124 HMGRs were identified and characterized from 36 representative plants, including L. erythrorhizon. Vascular plants were found to have more HMGR family genes than nonvascular plants. The phylogenetic tree revealed that during lineage and species diversification, the HMGRs evolved independently and intronless LerHMGRs emerged from multi-intron HMGR in land plants. Among them, Pinus tabuliformis and L. erythrorhizon had the most HMGR gene duplications, with 11 LerHMGRs most likely expanded through WGD/segmental and tandem duplications. In seedling roots and M9 cultured cells/hairy roots, where shikonin biosynthesis occurs, LerHMGR1 and LerHMGR2 were expressed significantly more than other genes. The enzymatic activities of LerHMGR1 and LerHMGR2 further supported their roles in catalyzing the conversion of HMG-CoA to mevalonate. Our findings provide insight into the molecular evolutionary properties and function of the HMGR family in plants and a basis for the genetic improvement of efficiently produced secondary metabolites in L. erythrorhizon.

4.
Bioorg Med Chem Lett ; 57: 128503, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34922028

RESUMEN

In this study, a series of novel shikonin N-benzyl matrinic acid ester derivatives (PMMB-299-PMMB-310) were synthesized and tested for their ability to inhibit the proliferation of cancer cells. Compared with shikonin and matrine, some of the ester derivatives were found to exhibit better anti-proliferative activity against seven different cancer cell lines, with less cytotoxicity toward non-cancerous cells. The strongest anti-proliferative activity was exhibited by PMMB-302, which had an IC50 value of 2.71 µM against A549 cells. The compound caused cell cycle arrest in the G2/M phase and induced apoptosis. Effects on the expression of apoptosis-related molecules such as Bcl2, Bcl-XL, caspase-3, caspase-9 and FADD suggested that PMMB-302 has tumor suppressive roles in lung cancer cells. In addition, PMMB-302 inhibited expression of telomerase core proteins, dyskerin and NHP2, and telomerase reverse transcriptase RNA. Moreover, molecular docking of PMMB-302 was subsequently conducted to determine the probable binding mode with telomerase. Taken together, the results indicate that PMMB-302 acts as a tumor suppressor in lung cancer cells by negatively regulating telomerase expression.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Naftoquinonas/farmacología , Quinolizinas/farmacología , Telomerasa/antagonistas & inhibidores , Alcaloides/síntesis química , Alcaloides/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Naftoquinonas/síntesis química , Naftoquinonas/metabolismo , Unión Proteica , Quinolizinas/síntesis química , Quinolizinas/metabolismo , Telomerasa/metabolismo , Matrinas
5.
J Appl Microbiol ; 133(3): 1975-1988, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35801665

RESUMEN

AIMS: This study was conducted to evaluate 35 natural flavonoids for their in vitro susceptibility against E. coli (ATCC 25922), Ps. aeruginosa (ATCC 27853), B. subtilis (ATCC 530) and Staph. aureus (ATCC 6538) in search of a potential broad-spectrum antibiotic. METHODS AND RESULTS: Glabridin, a natural isoflavonoid isolated from Glycyrrhiza glabra L., was identified to be highly active with a MIC of 8-16 µg ml-1 against Staph. aureus, B. subtilis and E. coli. By the results of the docking simulation, we located the potential targets of glabridin as DNA gyrase and dihydrofolate reductase (DHFR). The subsequent DNA gyrase inhibition assays (glabridin: IC50  = 0.8516 µmol L-1 , ciprofloxacin: IC50  = 0.04697 µmol L-1 ), DHFR inhibition assays (glabridin: inhibition ratio = 29%, methotrexate: inhibition ratio = 45% under 100 µmol L-1 treatment) and TUNEL confirmed that glabridin acted as DNA gyrase inhibitor and DHFR mild inhibitor, exerting bactericidal activity by blocking bacterial nucleic acid synthesis. CCK-8 and in silico calculations were also conducted to verify the low cytotoxicity and acceptable druggability of glabridin. CONCLUSION: These findings suggest that glabridin represents the prototypical member of an exciting structural class of natural antimicrobial agents. SIGNIFICANCE AND IMPACT OF THE STUDY: This study reports a novel mechanism of bactericidal activity of glabridin against Staph. aureus.


Asunto(s)
Flavonoides , Glycyrrhiza , Antibacterianos/farmacología , Girasa de ADN/genética , Escherichia coli , Flavonoides/farmacología , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus
6.
Bioorg Chem ; 111: 104872, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33838560

RESUMEN

Triple-negative breast cancer (TNBC) has an unfavorable prognosis attribute to its low differentiation, rapid proliferation and high distant metastasis rate. PI3K/Akt/mTOR as an intracellular signaling pathway plays a key role in the cell proliferation, migration, invasion, metabolism and regeneration. In this work, we designed and synthesized a series of anilide (dicarboxylic acid) shikonin esters targeting PI3K/Akt/mTOR signaling pathway, and assessed their antitumor effects. Through three rounds of screening by computer-aided drug design method (CADD), we preliminarily obtained sixteen novel anilide (dicarboxylic acid) shikonin esters and identified them as excellent compounds. CCK-8 assay results demonstrated that compound M9 exhibited better antiproliferative activities against MDA-MB-231, A549 and HeLa cell lines than shikonin (SK), especially for MDA-MB-231 (M9: IC50 = 4.52 ± 0.28 µM; SK: IC50 = 7.62 ± 0.26 µM). Moreover, the antiproliferative activity of M9 was better than that of paclitaxel. Further pharmacological studies showed that M9 could induce apoptosis of MDA-MB-231 cells and arrest the cell cycle in G2/M phase. M9 also inhibited the migration of MDA-MB-231 cells by inhibiting Wnt/ß-catenin signaling pathway. In addition, western blot results showed that M9 could inhibit cell proliferation and migration by down-regulating PI3K/Akt/mTOR signaling pathway. Finally, a three-dimensional quantitative structure-activity relationship (3D-QSAR) model was also constructed to provide a basis for further development of shikonin derivatives as potential antitumor drugs through structure-activity relationship analysis. To sum up, M9 could be a potential candidate for TNBC therapy.


Asunto(s)
Anilidas/farmacología , Antineoplásicos/farmacología , Diseño de Fármacos , Ésteres/farmacología , Naftoquinonas/farmacología , Anilidas/síntesis química , Anilidas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Ésteres/síntesis química , Ésteres/química , Humanos , Estructura Molecular , Naftoquinonas/síntesis química , Naftoquinonas/química , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Relación Estructura-Actividad , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
7.
Yi Chuan ; 43(5): 459-472, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33972216

RESUMEN

Zi Cao is an important traditional medicinal plant resource in China. Shikonin and its derivatives, as the purple-red naphthoquinones among natural products of its roots, are commonly used clinically in the treatment of sores and skin inflammations. Over the past few decades, due to their highly effective multiple biological activities, pharmacological effects, good clinical efficacy and high utilization value, shikonin and its derivatives have attracted increasing attention of domestic and foreign researchers. For this reason, the wild plant germplasm resources have been suffering a grievous exploitation, leading to a serious threat to the habitat. With the development of the biosynthesis, molecular metabolism and biotechnology, as well as the continuous innovation of research methods on the biological activities and pharmacological effects of plant natural products, significant progress has been made in the research on the biosynthetic pathways and related regulatory genes of shikonin. The pharmacological action and its mechanism of shikonin have also been deeply elucidated, which greatly promoted the basic research and clinical application development of shikonin. In this review, we briefly introduce and analyze the classification of Zi Cao, structure and composition of natural shikonin and its biosynthesis pathway, functional genes related to the regulation of shikonin biosynthesis, and biological activities and pharmacological functions of shikonin. Finally, we address possible prospective for the trend on the future research and development of natural shikonin and its derivatives, hoping to provide a useful reference for the deep mining and development of medicinal natural products from important Chinese medicinal materials, and to promote the modern development of traditional Chinese medicine.


Asunto(s)
Productos Biológicos , Plantas Medicinales , China , Raíces de Plantas , Estudios Prospectivos
8.
Yi Chuan ; 43(5): 487-500, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33972218

RESUMEN

Low pH with aluminum (Al) toxicity are the main limiting factors affecting crop production in acidic soil. Selection of legume crops with acid tolerance and nitrogen-fixation ability should be one of the effective measures to improve soil quality and promote agricultural production. The role of the rhizosphere microorganisms in this process has raised concerns among the research community. In this study, BX10 (Al-tolerant soybean) and BD2 (Al-sensitive soybean) were selected as plant materials. Acidic soil was used as growth medium. The soil layers from the outside to the inside of the root are bulk soil (BS), rhizosphere soil at two sides (SRH), rhizosphere soil after brushing (BRH) and rhizosphere soil after washing (WRH), respectively. High-throughput sequencing of 16S rDNA amplicons of the V4 region using the Illumina MiSeq platform was performed to compare the differences of structure, function and molecular genetic diversity of rhizosphere bacterial community of different genotypes of soybean. The results showed that there was no significant difference in alpha diversity and beta diversity in rhizosphere bacterial community among the treatments. PCA and PCoA analysis showed that BRH and WRH had similar species composition, while BS and SRH also had similar species composition, which indicated that plant mainly affected the rhizosphere bacterial community on sampling compartments BRH and WRH. The composition and abundance of rhizosphere bacterial community among the treatments were then compared at different taxonomic levels. The ternary diagram of phylum level showed that Cyanobacteria were enriched in WRH. Statistical analysis showed that the roots of Al-tolerant soybean BX10 had an enrichment effect on plant growth promoting rhizobacteria (PGPR), which included Cyanobacteria, Bacteroides, Proteobacteria and some genera and species related to the function of nitrogen fixation and aluminum tolerance. The rhizosphere bacterial community from different sampling compartments of the same genotype soybean also were selectively enriched in different PGPR. In addition, the functional prediction analysis showed that there was no significant difference in the classification and abundance of COG (clusters of orthologous groups of proteins) function among different treatments. Several COGs might be directly related to nitrogen fixation, including COG0347, COG1348, COG1433, COG2710, COG3870, COG4656, COG5420, COG5456 and COG5554. Al-sensitive soybean BD2 was more likely to be enriched in these COGs than BX10 in BRH and WRH, and the possible reason remains to be further investigated in the future.


Asunto(s)
Rizosfera , Suelo , Aluminio , Raíces de Plantas , Microbiología del Suelo , Glycine max
9.
Bioorg Med Chem ; 27(23): 115153, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31648877

RESUMEN

In this study, a series of shikonin derivatives combined with benzoylacrylic had been designed and synthesized, which showed an inhibitory effect on both tubulin and the epidermal growth factor receptor (EGFR). In vitro EGFR and cell growth inhibition assay demonstrated that compound PMMB-317 exhibited the most potent anti-EGFR (IC50 = 22.7 nM) and anti-proliferation activity (IC50 = 4.37 µM) against A549 cell line, which was comparable to that of Afatinib (EGFR, IC50 = 15.4 nM; A549, IC50 = 6.32 µM). Our results on mechanism research suggested that, PMMB-317 could induce the apoptosis of A549 cells in a dose- and time-dependent manner, along with decrease in mitochondrial membrane potential (MMP), production of ROS and alterations in apoptosis-related protein levels. Also, PMMB-317 could arrest cell cycle at G2/M phase to induce cell apoptosis, and inhibit the EGFR activity through blocking the signal transduction downstream of the mitogen-activated protein MAPK pathway and the anti-apoptotic kinase AKT pathway; typically, such results were comparable to those of afatinib. In addition, PMMB-317 could suppress A549 cell migration through the Wnt/ß-catenin signaling pathway in a dose-dependent manner. Additionally, molecular docking simulation revealed that, PMMB-317 could simultaneously combine with EGFR protein (5HG8) and tubulin (1SA0) through various forces. Moreover, 3D-QSAR study was also carried out, which could optimize our compound through the structure-activity relationship analysis. Furthermore, the in vitro and in vivo results had collectively confirmed that PMMB-317 might serve as a promising lead compound to further develop the potential therapeutic anticancer agents.


Asunto(s)
Acrilatos/farmacología , Antineoplásicos/farmacología , Benzoatos/farmacología , Naftoquinonas/farmacología , Moduladores de Tubulina/farmacología , Células A549 , Acrilatos/química , Acrilatos/uso terapéutico , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Benzoatos/química , Benzoatos/uso terapéutico , Diseño de Fármacos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Humanos , Ratones Desnudos , Simulación del Acoplamiento Molecular , Naftoquinonas/química , Naftoquinonas/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/uso terapéutico
10.
Environ Microbiol ; 19(11): 4620-4637, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28892292

RESUMEN

Acquisition of genomic islands (GIs) plays a central role in the diversification and adaptation of bacteria. Some GIs can be mobilized in trans by integrative and conjugative elements (ICEs) or conjugative plasmids if the GIs carry specific transfer-related sequences. However, the transfer mechanism of GIs lacking such elements remains largely unexplored. Here, we investigated the transmissibility of a GI found in a coral-associated marine bacterium. This GI does not carry genes with transfer functions, but it carries four genes required for robust biofilm formation. Notably, this GI is inserted in the integration site for SXT/R391 ICEs. We demonstrated that acquisition of an SXT/R391 ICE results in either a tandem GI/ICE arrangement or the complete displacement of the GI. The GI displacement by the ICE greatly reduces biofilm formation. In contrast, the tandem integration of the ICE with the GI in cis allows the GI to hijack the transfer machinery of the ICE to excise, transfer and re-integrate into a new host. Collectively, our findings reveal that the integration of an ICE into a GI integration site enables rapid genome dynamics and a new mechanism by which SXT/R391 ICEs can augment genome plasticity.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Elementos Transponibles de ADN/genética , ADN Bacteriano/genética , Islas Genómicas/genética , Pseudoalteromonas/genética , Organismos Acuáticos/genética , Organismos Acuáticos/crecimiento & desarrollo , Conjugación Genética/genética , Escherichia coli K12/genética , Escherichia coli K12/crecimiento & desarrollo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Shewanella/genética , Shewanella/crecimiento & desarrollo
11.
Hortic Res ; 11(5): uhae067, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38725460

RESUMEN

The low phosphorus (P) availability of acidic soils severely limits leguminous plant growth and productivity. Improving the soil P nutritional status can be achieved by increasing the P-content through P-fertilization or stimulating the mineralization of organic P via arbuscular mycorrhizal fungi (AMF) application; however, their corresponding impacts on plant and soil microbiome still remain to be explored. Here, we examined the effects of AMF-inoculation and P-fertilization on the growth of soybean with different P-efficiencies, as well as the composition of rhizo-microbiome in an acidic soil. The growth of recipient soybean NY-1001, which has a lower P-efficiency, was not significantly enhanced by AMF-inoculation or P-fertilization. However, the plant biomass of higher P-efficiency transgenic soybean PT6 was significantly increased by 46.74%-65.22% through AMF-inoculation. Although there was no discernible difference in plant biomass between PT6 and NY-1001 in the absence of AMF-inoculation and P-fertilization, PT6 had approximately 1.9-2.5 times the plant biomass of NY-1001 after AMF-inoculation. Therefore, the growth advantage of higher P-efficiency soybean was achieved through the assistance of AMF rather than P-fertilization in available P-deficient acidic soil. Most nitrogen (N)-fixing bacteria and some functional genes related to N-fixation were abundant in endospheric layer, as were the P-solubilizing Pseudomonas plecoglossicida, and annotated P-metabolism genes. These N-fixing and P-solubilizing bacteria were positive correlated with each other. Lastly, the two most abundant phytopathogenic fungi species accumulated in endospheric layer, they exhibited positive correlations with N-fixing bacteria, but displayed negative interactions with the majority of the other dominant non-pathogenic genera with potential antagonistic activity.

12.
Phytomedicine ; 126: 154894, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38377719

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is a malignant tumor without specific therapeutic targets and a poor prognosis. Chemotherapy is currently the first-line therapeutic option for TNBC. However, due to the heterogeneity of TNBC, not all of TNBC patients are responsive to chemotherapeutic agents. Therefore, the demand for new targeted agents is critical. ß-tubulin isotype III (Tubb3) is a prognostic factor associated with cancer progression, including breast cancer, and targeting Tubb3 may lead to improve TNBC disease control. Shikonin, the active compound in the roots of Lithospermun erythrorhizon suppresses the growth of various types of tumors, and its efficacy can be improved by altering its chemical structure. PURPOSE: In this work, the anti-TNBC effect of a shikonin derivative (PMMB276) was investigated, and its mechanism was also investigated. STUDY DESIGN/METHODS: This study combines flow cytometry, immunofluorescence staining, immunoblotting, immunoprecipitation, siRNA silencing, and the iTRAQ proteomics assay to analyze the inhibition potential of PMMB276 on TNBC. In vivo study was performed, Balb/c female murine models with or without the small molecule treatments. RESULTS: Herein, we screened 300 in-house synthesized analogs of shikonin against TNBC and identified a novel small molecule, PMMB276; it suppressed cell proliferation, induced apoptosis, and arrested the cell cycle at the G2/M phase, suggesting that it could have a tumor suppressive role in TNBC. Tubb3 was identified as the target of PMMB276 using proteomic and biological activity analyses. Meanwhile, PMMB276 regulated microtubule dynamics in vitro by inducing microtubule depolymerization and it could act as a tubulin stabilizer by a different process than that of paclitaxel. Moreover, suppressing or inhibiting Tubb3 with PMMB276 reduced the growth of breast cancer in an experimental mouse model, indicating that Tubb3 plays a significant role in TNBC progression. CONCLUSION: The findings support the therapeutic potential of PMMB276, a Tubb3 inhibitor, as a treatment for TNBC. Our findings might serve as a foundation for the utilization of shikonin and its derivatives in the development of anti-TNBC.


Asunto(s)
Naftoquinonas , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Animales , Ratones , Línea Celular Tumoral , Neoplasias de la Mama Triple Negativas/patología , Tubulina (Proteína) , Proteómica , Proliferación Celular
13.
Microbiol Spectr ; : e0331022, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36916950

RESUMEN

Strongly acidic soils are characterized by high aluminum (Al) toxicity and low phosphorus (P) availability, which suppress legume plant growth and nodule development. Arbuscular mycorrhizal fungi (AMF) stimulate rhizobia and enhance plant P uptake. However, it is unclear how this symbiotic soybean-AMF-rhizobial trio promotes soybean growth in acidic soils. We examined the effects of AMF and rhizobium addition on the growth of two soybean genotypes, namely, Al-tolerant and Al-sensitive soybeans as well as their associated bacterial and fungal communities in an acidic soil. With and without rhizobial addition, AMF significantly increased the fresh shoot and root biomass of Al-tolerant soybean by 47%/87% and 37%/24%, respectively. This increase in plant biomass corresponded to the enrichment of four plant growth-promoting rhizobacteria (PGPR) in the rhizospheric soil, namely, Chitinophagaceae bacterium 4GSH07, Paraburkholderia soli, Sinomonas atrocyanea, and Aquincola tertiaricarbonis. For Al-sensitive soybean, AMF addition increased the fresh shoot and root biomass by 112%/64% and 30%/217%, respectively, with/without rhizobial addition. Interestingly, this significant increase coincided with a decrease in the pathogenic fungus Nigrospora oryzae as well as an increase in S. atrocyanea, A. tertiaricarbonis, and Talaromyces verruculosus (a P-solubilizing fungus) in the rhizospheric soil. Lastly, the compartment niche along the soil-plant continuum shaped microbiome assembly, with pathogenic/saprotrophic microbes accumulating in the rhizospheric soil and PGPR related to nitrogen fixation or stress resistance (e.g., Rhizobium leguminosarum and Sphingomonas azotifigens) accumulating in the endospheric layer. IMPORTANCE Taken together, this study examined the effects of arbuscular mycorrhizal fungi (AMF) and rhizobial combinations on the growth of Al-tolerant and Al-sensitive soybeans as well as their associated microbial communities in acidic soils and concluded that AMF enhances soybean growth and Al stress tolerance by recruiting PGPR and altering the root-associated microbiome assembly in a host-dependent manner. In the future, these findings will help us better understand the impacts of AMF on rhizosphere microbiome assembly and will contribute to the development of soybean breeding techniques for the comprehensive use of PGPR in sustainable agriculture.

14.
Eur J Med Chem ; 249: 115166, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36731272

RESUMEN

Pyruvate kinase 2 (PKM2) and pyruvate dehydrogenase kinase 1 (PDK1) are two key enzymes in tumor glucose metabolism pathway that not only promote tumor growth and proliferation through accelerating aerobic glycolysis, but also contribute to drug resistance of non-small cell lung cancer (NSCLC). Considering that targeting PKM2 or PDK1 alone seems insufficient to remodel abnormal glucose metabolism to achieve significant antitumor activity, we proposed a "two-step approach" that regulates PKM2 and PDK1 synchronously. Firstly, we found that the combination of ML265 (PKM2 activator) and AZD7545 (PDK1 inhibitor) could synergistically inhibit proliferation and induce apoptosis in H1299 cells. Base on this, we designed a series of novel shikonin (SK) thioether derivatives as PKM2/PDK1 dual-target agents, among which the most potent compound E5 featuring a 2-methyl substitution on the benzene ring exerted significantly increased inhibitory activity toward EGFR mutant NSCLC cell H1975 (IC50 = 1.51 µmol/L), which was 3 and 17-fold more active than the lead compound SK (IC50 = 4.56 µmol/L) and the positive control gefitinib (IC50 = 25.56 µmol/L), respectively. Additionally, E5 also showed good anti-tumor activity in xenografted mouse models, with significantly lower toxicity side effects than SK. Moreover, E5 also inhibited the entry of PKM2 into nucleus to regulate the transcriptional activation of oncogenes, thus restoring the sensitivity of H1975 cell to gefitinib. Collectively, these data demonstrate that E5, a dual inhibitor of PKM2/PDK1, may be a promising adjunct to gefitinib in the treatment of EGFR-TKIs resistant NSCLC, deserving further investigation.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Gefitinib/farmacología , Piruvato Quinasa , Neoplasias Pulmonares/patología , Oxidorreductasas , Línea Celular Tumoral , Receptores ErbB , Glucosa , Proliferación Celular , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis
15.
J Hazard Mater ; 450: 131053, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36842198

RESUMEN

There are concerns that the innovation of genetically modified herbicide-tolerant (GMHT) plants, as well as the application of herbicide to such GMHT plants, could have an impact on ecological interactions and unintentionally harm non-targeted organisms. Consequently, we intend to use full-length 16 S rDNA amplicon sequencing to examine changes in the bacterial community in the rhizosphere of GMHT soybean (Z106) harboring 5-enolpyruvylshikimate-3-phosphate synthase and Glyphosate N-acetyltransferase genes and GMHT soybean treated with glyphosate (Z106G). Glyphosate application significantly impacted bacterial alpha diversity (species richness, and Shannon diversity). Permutational multivariate analysis of variance of beta diversity demonstrated that soil compartments and growth stages had a substantial impact on soybean rhizobacterial communities (soil compartments, growth stages, P = 0.001). Community composition revealed that Z106G soils were abundant in Taibaiella and Arthrobacter pascens at maturity, while Chryseobacterium joostei and Stenotrophomonas maltophilia predominated in Z106 soils during flowering. Nitrogen-fixing and phosphate-solubilizing microbes were found in higher proportions in the rhizosphere than in bulk soil, with Sinorhizobium being more abundant in Z106 and Bacillus and Stenotrophomonas being more prevalent in Z106G rhizosphere soils. Collectively, our findings suggest glyphosate application and glyphosate-tolerant soybean as potential regulators of soybean rhizobacterial composition.


Asunto(s)
Glycine max , Herbicidas , Glycine max/microbiología , Bacterias/genética , Suelo , Glifosato
16.
Environ Pollut ; 335: 122337, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37562532

RESUMEN

Plant roots continuously influence the rhizosphere, which also serves as a recruitment site for microorganisms with desirable functions. The development of genetically engineered (GE) crop varieties has offered unparalleled yield advantages. However, in-depth research on the effects of GE crops on the rhizosphere microbiome is currently insufficient. We used a triple-transgenic soybean cultivar (JD606) that is resistant to insects, glyphosate, and drought, along with its control, ZP661, and JD606 treated with glyphosate (JD606G). Using 16S and ITS rDNA sequencing, their effects on the taxonomy and function of the bacterial and fungal communities in the rhizosphere, surrounding, and bulk soil compartment niches were determined. Alpha diversity demonstrated a strong influence of JD606 and JD606G on bacterial Shannon diversity. Both treatments significantly altered the soil's pH and nitrogen content. Beta diversity identified the soil compartment niche as a key factor with a significant probability of influencing the bacterial and fungal communities associated with soybeans. Further analysis showed that the rhizosphere effect had a considerable impact on bacterial communities in JD606 and JD606G soils but not on fungal communities. Microbacterium, Bradyrhizobium, and Chryseobacterium were found as key rhizobacterial nodes. In addition, the LEfSe analysis identified biomarker taxa with plant-beneficial attributes, demonstrating rhizosphere-driven microbial recruitment. FUNGuild, Bugbase, and FAPROTAX functional predictions showed that ZP661 soils had more plant pathogen-associated microbes, while JD606 and JD606G soils had more stress-tolerance, nitrogen, and carbon cycle-related microbes. Bacterial rhizosphere networks had more intricate topologies than fungal networks. Furthermore, correlation analysis revealed that the bacteria and fungi with higher abundances exhibited varying degrees of positive and negative correlations. Our findings shed new light on the niche partitioning of bacterial and fungal communities in soil. It also indicates that following triple-transgenic soybean cultivation and glyphosate application, plant roots recruit microbes with beneficial taxonomic and functional traits in the rhizosphere.


Asunto(s)
Glycine max , Microbiota , Rizosfera , Suelo/química , Bacterias/genética , Raíces de Plantas/microbiología , Microbiología del Suelo , Glifosato
17.
Environ Sci Pollut Res Int ; 29(15): 22602-22612, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34792767

RESUMEN

The extensive use of copper fungicides has resulted in significant non-target effects on soil microbial communities. However, the documented effects are often variable and contradictory, depending on the methods used to assess them. In this study, we examined the effects of copper accumulation in surface soils on microbial catabolic activity, active biomass and composition, and sensitive bacterial species. The community-level catabolic profiles (CLCPs) showed that both normal (50 mg CuSO4 kg-1 soil) and high dosages (tenfold rate) of CuSO4 significantly increased the catabolic diversity of gram-positive bacteria, while the high dosage increased the overall catabolic activity of gram-negative bacteria. The phospholipid fatty acid (PLFA) analysis showed that the high dosage reduced the biomass of gram-positive bacteria by 27% but did not affect that of gram-negative bacteria. In comparison, the normal and high dosages decreased the fungal biomass by 34% and 58%, respectively. Furthermore, 16S rRNA-denaturing gradient gel electrophoresis (DGGE) fingerprint revealed that more than two-thirds of identified bands belonged to gram-negative bacteria. Some Cu-resistant gram-negative bacterial genera, such as Actinobacterium, Pseudomonas, and Proteobacterium, were detected in the soil to which the high dosage of CuSO4 had been applied. In conclusion, an excess application of CuSO4 increased the catabolic diversity of gram-positive bacteria and induced resistance in gram-negative bacteria, whereas the active fungal community displayed a dosage-dependent response to CuSO4 and can thus be used as a sensitive indicator of copper contamination.


Asunto(s)
Micobioma , Contaminantes del Suelo , Cobre/análisis , Ácidos Grasos/análisis , Bacterias Gramnegativas , Bacterias Grampositivas/metabolismo , ARN Ribosómico 16S , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
18.
Front Microbiol ; 13: 1023971, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246225

RESUMEN

Transgenic technology has been widely applied to crop development, with genetically modified (GM) maize being the world's second-largest GM crop. Despite the fact that rhizosphere bacterial and fungal populations are critical regulators of plant performance, few studies have evaluated the influence of GM maize on these communities. Plant materials used in this study included the control maize line B73 and the mcry1Ab and mcry2Ab dual transgenic insect-resistant maize line 2A-7. The plants and soils samples were sampled at three growth stages (jointing, flowering, and maturing stages), and the sampling compartments from the outside to the inside of the root are surrounding soil (SS), rhizospheric soil (RS), and intact root (RT), respectively. In this study, the results of alpha diversity revealed that from the outside to the inside of the root, the community richness and diversity declined while community coverage increased. Morever, the different host niches of maize rhizosphere and maize development stages influenced beta diversity according to statistical analysis. The GM maize line 2A-7 had no significant influence on the composition of microbial communities when compared to B73. Compared to RS and SS, the host niche RT tended to deplete Chloroflexi, Gemmatimonadetes and Mortierellomycota at phylum level. Nitrogen-fixation bacteria Pseudomonas, Herbaspirillum huttiense, Rhizobium leguminosarum, and Sphingomonas azotifigens were found to be enriched in the niche RT in comparison to RS and SS, whilst Bacillus was found to be increased and Stenotrophomonas was found to be decreased at the maturing stage as compared to jointing and flowering stages. The nitrogen fixation protein FixH (clusters of orthologous groups, COG5456), was found to be abundant in RT. Furthermore, the pathogen fungus that causes maize stalk rot, Gaeumannomyces radicicola, was found to be abundant in RT, while the beneficial fungus Mortierella hyalina was found to be depleted in RT. Lastly, the abundance of G. radicicola gradually increased during the development of maize. In conclusion, the host niches throughout the soil-plant continuum rather than the Bt insect-resistant gene or Bt protein secretion were primarily responsible for the differential assembly of root-associated microbial communities in GM maize, which provides the theoretical basis for ecological agriculture.

19.
Microb Biotechnol ; 15(12): 2942-2957, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36336802

RESUMEN

Plant roots significantly influence soil microbial diversity, and soil microorganisms play significant roles in both natural and agricultural ecosystems. Although the genetically modified (GM) crops with enhanced insect and herbicide resistance are thought to have unmatched yield and stress resistance advantages, thorough and in-depth case studies still need to be carried out in a real-world setting due to the potential effects of GM plants on soil microbial communities. In this study, three treatments were used: a recipient soybean variety Jack, a triple transgenic soybean line JD321, and the glyphosate-treated JD321 (JD321G). Three sampling stages (flowering, seed filling and maturing), as well as three host niches of soybean rhizosphere [intact roots (RT), rhizospheric soil (RS) and surrounding soil (SS)] were established. In comparison to Jack, the rhizospheric soil of JD321G had higher urease activity and lower nitrite reductase at the flowering stage. Different treatments and different sampling stages existed no significant effects on the compositions of microbial communities at different taxonomic levels. However, at the genus level, the relative abundance of three plant growth-promoting fungal genera (i.e. Mortierella, Chaetomium and Pseudombrophila) increased while endophytic bacteria Chryseobacterium and pathogenic bacteria Streptomyces decreased from the inside to the outside of the roots (i.e. RT → RS → SS). Moreover, two bacterial genera, Bradyrhizobium and Ensifer were more abundant in RT than in RS and SS, as well as three species, Agrobacterium radiobacter, Ensifer fredii and Ensifer meliloti, which are closely related to nitrogen-fixation. Furthermore, five clusters of orthologous groups (COGs) associated to nitrogen-fixation genes were higher in RT than in RS, whereas only one COG annotated as dinitrogenase iron-molybdenum cofactor biosynthesis protein was lower. Overall, the results imply that the rhizosphere host niches throughout the soil-plant continuum largely control the composition and function of the root-associated microbiome of triple transgenic soybean.


Asunto(s)
Microbiota , Rhizobiaceae , Glycine max/genética , Glycine max/microbiología , Microbiología del Suelo , Raíces de Plantas/microbiología , Rizosfera , Suelo , Nitrógeno
20.
Life (Basel) ; 12(11)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36362930

RESUMEN

The BAHD acyltransferase family is a unique class of plant proteins that acylates plant metabolites and participates in plant secondary metabolic processes. However, the BAHD members in Lithospermum erythrorhizon remain unknown and uncharacterized. Although the heterologously expressed L. erythrorhizon BAHD family member LeSAT1 in Escherichia coli has been shown to catalyze the conversion of shikonin to acetylshikonin in vitro, its in vivo role remains unknown. In this study, the characterization, evolution, expression patterns, and gene function of LeBAHDs in L. erythrorhizon were explored by bioinformatics and transgenic analysis. We totally identified 73 LeBAHDs in the reference genome of L. erythrorhizon. All LeBAHDs were phylogenetically classified into five clades likely to perform different functions, and were mainly expanded by dispersed and WGD/segmental duplication. The in vivo functional investigation of the key member LeBAHD1/LeSAT1 revealed that overexpression of LeBAHD1 in hairy roots significantly increased the content of acetylshikonin as well as the conversion rate of shikonin to acetylshikonin, whereas the CRISPR/Cas9-based knockout of LeBAHD1 in hairy roots displayed the opposite trend. Our results not only confirm the in vivo function of LeBAHD1/LeSAT1 in the biosynthesis of acetylshikonin, but also provide new insights for the biosynthetic pathway of shikonin and its derivatives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA