Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Hum Brain Mapp ; 40(14): 4091-4104, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31206931

RESUMEN

Neurodegenerative disorders, such as Alzheimer's disease (AD) and progressive forms of multiple sclerosis (MS), can affect the brainstem and are associated with atrophy that can be visualized by MRI. Anatomically accurate, large-scale assessments of brainstem atrophy are challenging due to lack of automated, accurate segmentation methods. We present a novel method for brainstem volumetry using a fully-automated segmentation approach based on multi-dimensional gated recurrent units (MD-GRU), a deep learning based semantic segmentation approach employing a convolutional adaptation of gated recurrent units. The neural network was trained on 67 3D-high resolution T1-weighted MRI scans from MS patients and healthy controls (HC) and refined using segmentations of 20 independent MS patients' scans. Reproducibility was assessed in MR test-retest experiments in 33 HC. Accuracy and robustness were examined by Dice scores comparing MD-GRU to FreeSurfer and manual brainstem segmentations in independent MS and AD datasets. The mean %-change/SD between test-retest brainstem volumes were 0.45%/0.005 (MD-GRU), 0.95%/0.009 (FreeSurfer), 0.86%/0.007 (manually edited segmentations). Comparing MD-GRU to manually edited segmentations the mean Dice scores/SD were: 0.97/0.005 (brainstem), 0.95/0.013 (mesencephalon), 0.98/0.006 (pons), 0.95/0.015 (medulla oblongata). Compared to the manual gold standard, MD-GRU brainstem segmentations were more accurate than FreeSurfer segmentations (p < .001). In the multi-centric acquired AD data, the mean Dice score/SD for the MD-GRU-manual segmentation comparison was 0.97/0.006. The fully automated brainstem segmentation method MD-GRU provides accurate, highly reproducible, and robust segmentations in HC and patients with MS and AD in 200 s/scan on an Nvidia GeForce GTX 1080 GPU and shows potential for application in large and longitudinal datasets.


Asunto(s)
Tronco Encefálico/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Esclerosis Múltiple/diagnóstico por imagen , Enfermedades Neurodegenerativas/diagnóstico por imagen , Neuroimagen/métodos , Adulto , Anciano , Aprendizaje Profundo , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad
2.
Front Neurosci ; 14: 609422, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424541

RESUMEN

Background: Brainstem-mediated functions are impaired in neurodegenerative diseases and aging. Atrophy can be visualized by MRI. This study investigates extrinsic sources of brainstem volume variability, intrinsic sources of anatomical variability, and the influence of age and sex on the brainstem volumes in healthy subjects. We aimed to develop efficient normalization strategies to reduce the effects of intrinsic anatomic variability on brainstem volumetry. Methods: Brainstem segmentation was performed from MPRAGE data using our deep-learning-based brainstem segmentation algorithm MD-GRU. The extrinsic variability of brainstem volume assessments across scanners and protocols was investigated in two groups comprising 11 (median age 33.3 years, 7 women) and 22 healthy subjects (median age 27.6 years, 50% women) scanned twice and compared using Dice scores. Intrinsic anatomical inter-individual variability and age and sex effects on brainstem volumes were assessed in segmentations of 110 healthy subjects (median age 30.9 years, range 18-72 years, 53.6% women) acquired on 1.5T (45%) and 3T (55%) scanners. The association between brainstem volumes and predefined anatomical covariates was studied using Pearson correlations. Anatomical variables with associations of |r| > 0.30 as well as the variables age and sex were used to construct normalization models using backward selection. The effect of the resulting normalization models was assessed by % relative standard deviation reduction and by comparing the inter-individual variability of the normalized brainstem volumes to the non-normalized values using paired t- tests with Bonferroni correction. Results: The extrinsic variability of brainstem volumetry across different field strengths and imaging protocols was low (Dice scores > 0.94). Mean inter-individual variability/SD of total brainstem volumes was 9.8%/7.36. A normalization based on either total intracranial volume (TICV), TICV and age, or v-scale significantly reduced the inter-individual variability of total brainstem volumes compared to non-normalized volumes and similarly reduced the relative standard deviation by about 35%. Conclusion: The extrinsic variability of the novel brainstem segmentation method MD-GRU across different scanners and imaging protocols is very low. Anatomic inter-individual variability of brainstem volumes is substantial. This study presents efficient normalization models for variability reduction in brainstem volumetry in healthy subjects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA