Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928416

RESUMEN

A homozygous mutation of the DNAJC6 gene causes autosomal recessive familial type 19 of Parkinson's disease (PARK19). To test the hypothesis that PARK19 DNAJC6 mutations induce the neurodegeneration of dopaminergic cells by reducing the protein expression of functional DNAJC6 and causing DNAJC6 paucity, an in vitro PARK19 model was constructed by using shRNA-mediated gene silencing of endogenous DANJC6 in differentiated human SH-SY5Y dopaminergic neurons. shRNA targeting DNAJC6 induced the neurodegeneration of dopaminergic cells. DNAJC6 paucity reduced the level of cytosolic clathrin heavy chain and the number of lysosomes in dopaminergic neurons. A DNAJC6 paucity-induced reduction in the lysosomal number downregulated the protein level of lysosomal protease cathepsin D and impaired macroautophagy, resulting in the upregulation of pathologic α-synuclein or phospho-α-synucleinSer129 in the endoplasmic reticulum (ER) and mitochondria. The expression of α-synuclein shRNA or cathepsin D blocked the DNAJC6 deficiency-evoked degeneration of dopaminergic cells. An increase in ER α-synuclein or phospho-α-synucleinSer129 caused by DNAJC6 paucity activated ER stress, the unfolded protein response and ER stress-triggered apoptotic signaling. The lack of DNAJC6-induced upregulation of mitochondrial α-synuclein depolarized the mitochondrial membrane potential and elevated the mitochondrial level of superoxide. The DNAJC6 paucity-evoked ER stress-related apoptotic cascade, mitochondrial malfunction and oxidative stress induced the degeneration of dopaminergic neurons via activating mitochondrial pro-apoptotic signaling. In contrast with the neuroprotective function of WT DNAJC6, the PARK19 DNAJC6 mutants (Q789X or R927G) failed to attenuate the tunicamycin- or rotenone-induced upregulation of pathologic α-synuclein and stimulation of apoptotic signaling. Our data suggest that PARK19 mutation-induced DNAJC6 paucity causes the degeneration of dopaminergic neurons via downregulating protease cathepsin D and upregulating neurotoxic α-synuclein. Our results also indicate that PARK19 mutation (Q789X or R927G) impairs the DNAJC6-mediated neuroprotective function.


Asunto(s)
Catepsina D , Neuronas Dopaminérgicas , Estrés del Retículo Endoplásmico , Proteínas del Choque Térmico HSP40 , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Apoptosis/genética , Catepsina D/metabolismo , Catepsina D/genética , Línea Celular Tumoral , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Regulación hacia Abajo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas del Choque Térmico HSP40/genética , Lisosomas/metabolismo , Mitocondrias/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Regulación hacia Arriba
2.
Ann Neurol ; 89(3): 485-497, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33236446

RESUMEN

OBJECTIVE: The study was undertaken to identify a monogenic cause of early onset, generalized dystonia. METHODS: Methods consisted of genome-wide linkage analysis, exome and Sanger sequencing, clinical neurological examination, brain magnetic resonance imaging, and protein expression studies in skin fibroblasts from patients. RESULTS: We identified a heterozygous variant, c.388G>A, p.Gly130Arg, in the eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2) gene, segregating with early onset isolated generalized dystonia in 5 patients of a Taiwanese family. EIF2AK2 sequencing in 191 unrelated patients with unexplained dystonia yielded 2 unrelated Caucasian patients with an identical heterozygous c.388G>A, p.Gly130Arg variant, occurring de novo in one case, another patient carrying a different heterozygous variant, c.413G>C, p.Gly138Ala, and one last patient, born from consanguineous parents, carrying a third, homozygous variant c.95A>C, p.Asn32Thr. These 3 missense variants are absent from gnomAD, and are located in functional domains of the encoded protein. In 3 patients, additional neurological manifestations were present, including intellectual disability and spasticity. EIF2AK2 encodes a kinase (protein kinase R [PKR]) that phosphorylates eukaryotic translation initiation factor 2 alpha (eIF2α), which orchestrates the cellular stress response. Our expression studies showed abnormally enhanced activation of the cellular stress response, monitored by PKR-mediated phosphorylation of eIF2α, in fibroblasts from patients with EIF2AK2 variants. Intriguingly, PKR can also be regulated by PRKRA (protein interferon-inducible double-stranded RNA-dependent protein kinase activator A), the product of another gene causing monogenic dystonia. INTERPRETATION: We identified EIF2AK2 variants implicated in early onset generalized dystonia, which can be dominantly or recessively inherited, or occur de novo. Our findings provide direct evidence for a key role of a dysfunctional eIF2α pathway in the pathogenesis of dystonia. ANN NEUROL 2021;89:485-497.


Asunto(s)
Trastornos Distónicos/genética , Fibroblastos/metabolismo , eIF-2 Quinasa/genética , Adolescente , Adulto , Edad de Inicio , Pueblo Asiatico , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Trastornos Distónicos/metabolismo , Trastornos Distónicos/fisiopatología , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Mutación Missense , Linaje , Población Blanca , Secuenciación del Exoma , Adulto Joven , eIF-2 Quinasa/metabolismo
3.
J Physiol ; 596(17): 4207-4217, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29888792

RESUMEN

KEY POINTS: Synaptic plasticity is involved in daily activities but abnormal plasticity may be deleterious. In this study, we found that motor plasticity could be modulated by suppressing the premotor cortex with the theta burst form of repetitive transcranial magnetic stimulation. Such changes in motor plasticity were associated with reduced learning of a simple motor task. We postulate that the premotor cortex adjusts the amount of motor plasticity to modulate motor learning through heterosynaptic metaplasticity. The present results provide an insight into how the brain physiologically coordinates two different areas to bring them into a functional network, a concept that could be employed to intervene in diseases with abnormal plasticity. ABSTRACT: Primary motor cortex (M1) plasticity is known to be influenced by the excitability and prior activation history of M1 itself. However, little is known about how its plasticity is influenced by other areas of the brain. In the present study on humans of either sex who were known to respond to theta burst stimulation from previous studies, we found plasticity of M1 could be modulated by suppressing the premotor cortex with the theta burst form of repetitive transcranial magnetic stimulation. Motor plasticity was distorted and disappeared 30 min and 120 min, respectively, after premotor excitability was suppressed. Further evaluation revealed that such changes in motor plasticity were associated with impaired learning of a simple motor task. We postulate that the premotor cortex modulates the amount of plasticity within M1 through heterosynaptic metaplasticity, and that this may impact on learning of a simple motor task previously shown to be directly affected by M1 plasticity. The present results provide an insight into how the brain physiologically coordinates two different areas to bring them into a functional network. Furthermore, such concepts could be translated into therapeutic approaches for diseases with aberrant plasticity.


Asunto(s)
Encéfalo/fisiología , Potenciales Evocados Motores , Lateralidad Funcional , Mano/fisiología , Corteza Motora/fisiología , Plasticidad Neuronal , Adulto , Femenino , Humanos , Aprendizaje , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Masculino , Desempeño Psicomotor , Ritmo Teta , Estimulación Magnética Transcraneal/métodos
4.
Eur Radiol ; 26(11): 3978-3988, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26945764

RESUMEN

OBJECTIVES: To investigate the diagnostic performance of diffusion tensor imaging in patients with Parkinson's disease (PD). METHODS: We examined a total of 126 PD patients (68 males/58 females, mean age: 62.0 ±7.6 years) and 91 healthy controls (43 males/48 females, mean age: 59.8 ±7.2 years). Images were acquired on a 3 Tesla magnetic resonance scanner. The Camino software was used to normalize and parcellate diffusion-weighted images into 90 cerebral regions based on the automatic anatomical labelling template. The minimum, median, and maximum values of the mean/radial/axial diffusivity/fractional anisotropy were determined. The diagnostic performance was assessed by receiver operating characteristic analysis. The associations of imaging parameters with disease severity were tested using Pearson's correlation coefficients after adjustment for disease duration. RESULTS: Compared with healthy controls, PD patients showed increased diffusivity in multiple cortical regions that extended beyond the basal ganglia. An area under curve of 85 % was identified for the maximum values of mean diffusivity in the ipsilateral middle temporal gyrus. The most significant intergroup difference was 26.8 % for the ipsilateral inferior parietal gyrus. CONCLUSION: The measurement of water diffusion from the parcellated cortex may be clinically useful for the assessment of PD patients. KEY POINTS: • Increased diffusivity was identified in multiple cortical regions of Parkinson's disease patients. • The area under the receiver operating curve was 85 % in the middle temporal gyrus. • The ipsilateral inferior parietal gyrus showed the most significant change.


Asunto(s)
Encéfalo/patología , Enfermedad de Parkinson/patología , Adulto , Anciano , Anisotropía , Área Bajo la Curva , Ganglios Basales/patología , Mapeo Encefálico/métodos , Estudios de Casos y Controles , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Curva ROC
5.
Biochim Biophys Acta ; 1832(4): 585-93, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23348097

RESUMEN

Truncating or missense mutation of cullin 4B (CUL4B) is one of the most prevalent causes underlying X-linked intellectual disability (XLID). CUL4B-RING E3 ubiquitin ligase promotes ubiquitination and degradation of various proteins. Consistent with previous studies, overexpression of wild-type CUL4B in 293 cells enhanced ubiquitylation and degradation of TSC2 or cyclin E. The present study shows that XLID mutant (R388X), (R572C) or (V745A) CULB failed to promote ubiquitination and degradation of TSC2 or cyclin E. Adenoviruses-mediated expression of wild-type CUL4B decreased protein level of TSC2 or cyclin E in cultured neocortical neurons of frontal lobe. Furthermore, shRNA-mediated CUL4B knockdown caused an upregulation of TSC2 or cyclin E. XLID mutant (R388X), (R572C) or (V745A) CUL4B did not downregulate protein expression of TSC2 or cyclin E in neocortical neurons. By promoting TSC2 degradation, CUL4B could positively regulate mTOR activity in neocortical neurons of frontal cortex. Consistent with this hypothesis, CUL4B knockdown-induced upregulation of TSC2 in neocortical neurons resulted in a decreased protein level of active phospho-mTOR(Ser2448) and a reduced expression of active phospho-p70S6K(Thr389) and phospho-4E-BP1(Thr37/46), two main substrates of mTOR-mediated phosphorylation. Wild-type CUL4B also increased protein level of active phospho-mTOR(Ser2448), phospho-p70S6K(Thr389) or phospho-4E-BP1(Thr37/46). XLID CUL4B mutants did not affect protein level of active phospho-mTOR(Ser2448), phospho-p70S6K(Thr389) or phospho-4E-BP1(Thr37/46). Our results suggest that XLID CUL4B mutants are defective in promoting TSC2 degradation and positively regulating mTOR signaling in neocortical neurons.


Asunto(s)
Proteínas Cullin , Discapacidad Intelectual , Serina-Treonina Quinasas TOR , Proteínas Supresoras de Tumor , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Regulación de la Expresión Génica , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Células HEK293 , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/fisiopatología , Mutación , Neocórtex/metabolismo , Neocórtex/patología , Neuronas/metabolismo , Neuronas/patología , Proteolisis , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitinación
6.
Neurobiol Dis ; 68: 190-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24830390

RESUMEN

Twelve- to sixteen-month-old (G2019S) LRRK2 transgenic mice prepared by us displayed progressive neuronal death of substantia nigra pars compacta (SNpc) dopaminergic cells. In the present study, we hypothesized that prior to a late-phase death of SNpc dopaminergic neurons, (G2019S) LRRK2 also causes an early-phase neuronal dysfunction of SNpc dopaminergic cells in the (G2019S) LRRK2 mouse. Eight to nine-month-old (G2019S) LRRK2 transgenic mice exhibited the symptom of hypoactivity in the absence of the degeneration of SNpc dopaminergic neurons or nigrostriatal dopaminergic terminals. Whole-cell current-clamp recordings of SNpc dopaminergic cells in brain slices demonstrated a significant decrease in spontaneous firing frequency of SNpc dopaminergic neurons of 8-month-old (G2019S) LRRK2 mice. Carbon fiber electrode amperometry recording using striatal slices showed that (G2019S) LRRK2 transgenic mice at the age of 8 to 9months display an impaired evoked dopamine release in the dorsolateral striatum. Normal nigrostriatal dopaminergic transmission is required for the induction of long-term synaptic plasticity expressed at corticostriatal glutamatergic synapses of striatal medium spiny neurons. Whole-cell voltage-clamp recordings showed that in contrast to medium spiny neurons of 8 to 9-month-old wild-type mice, high-frequency stimulation of corticostriatal afferents failed to induce long-term depression (LTD) of corticostriatal EPSCs in medium spiny neurons of (G2019S) LRRK2 mice at the same age. Our study provides the evidence that mutant (G2019S) LRRK2 causes early-phase dysfunctions of SNpc dopaminergic neurons, including a decrease in spontaneous firing rate and a reduction in evoked dopamine release, and impairment of corticostriatal LTD in the (G2019S) LRRK2 transgenic mouse.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Potenciación a Largo Plazo/genética , Mutación/genética , Enfermedad de Parkinson , Proteínas Serina-Treonina Quinasas/genética , Sustancia Negra/patología , Animales , Apomorfina/farmacología , Corteza Cerebral/fisiopatología , Cuerpo Estriado/fisiopatología , Agonistas de Dopamina/farmacología , Antagonistas del GABA/farmacología , Glicina/genética , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Potenciación a Largo Plazo/efectos de los fármacos , Ratones , Ratones Transgénicos , Actividad Motora/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología , Picrotoxina/farmacología , Cintigrafía , Serina/genética , Sustancia Negra/diagnóstico por imagen , Tirosina 3-Monooxigenasa/metabolismo
7.
Clin Nucl Med ; 49(5): 387-396, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38465965

RESUMEN

BACKGROUND: Progressive supranuclear palsy (PSP) is a tauopathy that involves subcortical regions but also extends to cortical areas. The clinical impact of different tau protein sites and their influence on glymphatic dysfunction have not been investigated. PATIENTS AND METHODS: Participants (n = 55; 65.6 ± 7.1 years; 29 women) with PSP (n = 32) and age-matched normal controls (NCs; n = 23) underwent 18 F-Florzolotau tau PET, MRI, PSP Rating Scale (PSPRS), and Mini-Mental State Examination. Cerebellar gray matter (GM) and parametric estimation of reference signal intensity were used as references for tau burden measured by SUV ratios. Glymphatic activity was measured by diffusion tensor image analysis along the perivascular space (DTI-ALPS). RESULTS: Parametric estimation of reference signal intensity is a better reference than cerebellar GM to distinguish tau burden between PSP and NCs. PSP patients showed higher cortical and subcortical tau SUV ratios than NCs ( P < 0.001 and <0.001). Cortical and subcortical tau deposition correlated with PSPRS, UPDRS, and Mini-Mental State Examination scores (all P 's < 0.05). Cortical tau deposition was further associated with the DTI-ALPS index and frontal-temporal-parietal GM atrophy. The DTI-ALPS indexes showed a significantly negative correlation with the PSPRS total scores ( P < 0.01). Finally, parietal and occipital lobe tau depositions showed mediating effects between the DTI-ALPS index and PSPRS score. CONCLUSIONS: Cortical tau deposition is associated with glymphatic dysfunction and plays a role in mediating glymphatic dysfunction and clinical severity. Our results provide a possible explanation for the worsening of clinical severity in patients with PSP.


Asunto(s)
Parálisis Supranuclear Progresiva , Proteínas tau , Humanos , Femenino , Proteínas tau/metabolismo , Parálisis Supranuclear Progresiva/metabolismo , Imagen por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador
8.
Biomed J ; 46(3): 100541, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35671948

RESUMEN

BACKGROUND: There are currently no specific tests for either idiopathic Parkinson's disease or Parkinson-plus syndromes. The study aimed to investigate the diagnostic performance of features extracted from the whole brain using diffusion tensor imaging concerning parkinsonian disorders. METHODS: The retrospective data yielded 625 participants (average age: 61.4 ± 8.2, men/women: 313/312; healthy controls/idiopathic Parkinson's disease/multiple system atrophy/progressive supranuclear palsy: 219/286/51/69) between 2008 and 2017. Diffusion-weighted images were obtained using a 3T MR scanner. The 90th, 50th, and 10th percentiles of fractional anisotropy and mean/axial/radial diffusivity from each parcellated brain area were recorded. Statistical analysis was evaluated based on the features extracted from the whole brain, as determined using discriminant function analysis and support vector machine. 20% of the participants were used as an independent blind dataset with 5 times cross-verification. Diagnostic performance was evaluated by the sensitivity and the F1 score. RESULTS: Diagnoses were accurate for distinguishing idiopathic Parkinson's disease from healthy control and Parkinson-plus syndromes (87.4 ± 2.1% and 82.5 ± 3.9%, respectively). Diagnostic F1 scores varied for Parkinson-plus syndromes with 67.2 ± 3.8% for multiple system atrophy and 71.6 ± 3.5% for progressive supranuclear palsy. For early and late detection of idiopathic Parkinson's disease, the diagnostic performance was 79.2 ± 7.4% and 84.4 ± 6.9%, respectively. The diagnostic performance was 68.8 ± 11.0% and 52.5 ± 8.9% in early and late detection to distinguish different Parkinson-plus syndromes. CONCLUSIONS: Features extracted from diffusion tensor imaging of the whole brain can provide objective evidence for the diagnosis of healthy control, idiopathic Parkinson's disease, and Parkinson-plus syndromes with fair to very good diagnostic performance.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Masculino , Humanos , Femenino , Persona de Mediana Edad , Anciano , Enfermedad de Parkinson/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Estudios Retrospectivos , Síndrome , Diagnóstico Diferencial , Trastornos Parkinsonianos/diagnóstico por imagen , Aprendizaje Automático
9.
Front Neurol ; 14: 1156041, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37292128

RESUMEN

Introduction: REM Sleep Behavior Disorder (RBD) has been highlighted to identify a patient with prodromal Parkinson's disease (PD). Although many studies focus on biomarkers to predict an RBD patient's evolution from prodromal PD to clinical PD, the neurophysiological perturbation of cortical excitability has not yet been well elucidated. Moreover, no study describes the difference between RBD with and without abnormal TRODAT-1 SPECT. Methods: By measuring the amplitude of motor evoked potentials (MEP), the cortical excitability changes after transcranial magnetic stimulation (TMS) were evaluated in 14 patients with RBD and eight healthy controls (HC). Seven of the 14 patients with RBD showed abnormal TRODAT-1 (TRA-RBD), and seven were normal (TRN-RBD). The tested parameters of cortical excitability include resting motor threshold (RMT), active motor threshold (AMT), short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), contralateral silence period (CSP), and input-output recruitment curve. Results: The RMT and AMT showed no difference among the three studied groups. There was only SICI at inter-stimuli-interval 3 ms revealing group differences. The TRA-RBD demonstrated significant differences to HC in these aspects: decreased SICI, increased ICF, shortening of CSP, and augmented MEP amplitude at 100% RMT. Moreover, the TRA-RBD had a smaller MEP facilitation ratio at 50% and 100% of maximal voluntary contraction when compared to TRN-RBD. The TRN-RBD did not present any difference to HC. Conclusion: We showed that TRA-RBD shared similar cortical excitability changes with clinical PD. These findings would provide further insight into the concept that RBD is the highly prevalent entity in prodromal PD.

10.
Mol Neurobiol ; 60(5): 2706-2728, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36715921

RESUMEN

Deletion and missense or nonsense mutation of RAB39B gene cause familial Parkinson's disease (PD). We hypothesized that deletion and mutation of RAB39B gene induce degeneration of dopaminergic neurons by decreasing protein level of functional RAB39B and causing RAB39B deficiency. Cellular model of deletion or mutation of RAB39B gene-induced PD was prepared by knocking down endogenous RAB39B in human SH-SY5Y dopaminergic cells. Transfection of shRNA-induced 90% reduction in RAB39B level significantly decreased viability of SH-SY5Y dopaminergic neurons. Deficiency of RAB39B caused impairment of macroautophagy/autophagy, which led to increased protein levels of α-synuclein and phospho-α-synucleinSer129 within endoplasmic reticulum (ER) and mitochondria. RAB39B deficiency-induced increase of ER α-synuclein and phospho-α-synucleinSer129 caused activation of ER stress, unfolded protein response, and ER stress-induced pro-apoptotic cascade. Deficiency of RAB39B-induced increase of mitochondrial α-synuclein decreased mitochondrial membrane potential and increased mitochondrial superoxide. RAB39B deficiency-induced activation of ER stress pro-apoptotic pathway, mitochondrial dysfunction, and oxidative stress caused apoptotic death of SH-SY5Y dopaminergic cells by activating mitochondrial apoptotic cascade. In contrast to neuroprotective effect of wild-type RAB39B, PD mutant (T168K), (W186X), or (G192R) RAB39B did not prevent tunicamycin- or rotenone-induced increase of neurotoxic α-synuclein and activation of pro-apoptotic pathway. Our results suggest that RAB39B is required for survival and macroautophagy function of dopaminergic neurons and that deletion or PD mutation of RAB39B gene-induced RAB39B deficiency induces apoptotic death of dopaminergic neurons via impairing autophagy function and upregulating α-synuclein.


Asunto(s)
Estrés del Retículo Endoplásmico , Neuroblastoma , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Autofagia , Neuronas Dopaminérgicas/metabolismo , Mitocondrias/metabolismo , Neuroblastoma/metabolismo , Estrés Oxidativo , Proteínas de Unión al GTP rab/metabolismo
11.
Biochem Pharmacol ; 212: 115524, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37001680

RESUMEN

Microglial activation-induced neuroinflammation contributes to onset and progression of sporadic and hereditary Parkinson's disease (PD). Activated microglia secrete pro-inflammatory and neurotoxic IL-1ß, IL-6 and TNF-α, which subsequently promote neurodegeneration. Formyl peptide receptor-1 (FPR1) of CNS microglia functions as pattern recognition receptor and is activated by N-formylated peptides, leading to microglial activation, induction of inflammatory responses and resulting neurotoxicity. In this study, it was hypothesized that FPR1 activation of microglia causes loss of dopaminergic neurons by activating inflammasome and upregulating IL-1ß, IL-6 or TNF-α and that FPR1 antagonist HCH6-1 exerts neuroprotective effect on dopaminergic neurons. FPR1 agonist fMLF induced activation of microglia cells by causing activation of NLRP3 inflammasome and upregulation and secretion of IL-1ß, IL-6 or TNF-α. Conditioned medium (CM) of fMLF-treated microglia cells, which contains neurotoxic IL-1ß, IL-6 and TNF-α, caused apoptotic death of differentiated SH-SY5Y dopaminergic neurons by inducing mitochondrial oxidative stress and activating pro-apoptotic signaling. FPR1 antagonist HCH6-1 prevented fMLF-induced activation of inflammasome and upregulation of pro-inflammatory cytokines in microglia cells. HCH6-1 co-treatment reversed CM of fMLF-treated microglia-induced apoptotic death of dopaminergic neurons. FPR1 antagonist HCH6-1 inhibited rotenone-induced upregulation of microglial marker Iba-1 protein level, cell death of dopaminergic neurons and motor impairment in zebrafish. HCH6-1 ameliorated rotenone-induced microglial activation, upregulation of FPR1 mRNA, activation of NLRP3 inflammasome, cell death of SN dopaminergic neurons and PD motor deficit in mice. Our results suggest that FPR1 antagonist HCH6-1 possesses anti-neuroinflammatory and neuroprotective effects on dopaminergic neurons by inhibiting microglial activation and upregulation of inflammasome activity and pro-inflammatory cytokines.


Asunto(s)
Neuroblastoma , Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratones , Humanos , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedades Neuroinflamatorias , Receptores de Formil Péptido/genética , Receptores de Formil Péptido/metabolismo , Interleucina-6/metabolismo , Rotenona/toxicidad , Rotenona/metabolismo , Pez Cebra , Modelos Animales de Enfermedad , Neuroblastoma/metabolismo , Neuronas Dopaminérgicas , Microglía , Citocinas/metabolismo
12.
Biochim Biophys Acta ; 1812(6): 674-84, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21421046

RESUMEN

Mutations in PTEN-induced kinase 1 (PINK1) gene cause recessive familial type 6 of Parkinson's disease (PARK6). PINK1 is believed to exert neuroprotective effect on SN dopaminergic cells by acting as a mitochondrial Ser/Thr protein kinase. Autosomal recessive inheritance indicates the involvement of loss of PINK1 function in PARK6 pathogenesis. In the present study, confocal imaging of cultured SN dopaminergic neurons prepared from PINK1 knockout mice was performed to investigate physiological importance of PINK1 in maintaining mitochondrial membrane potential (ΔΨ(m)) and mitochondrial morphology and test the hypothesis that PARK6 mutations cause the loss of PINK1 function. PINK1-deficient SN dopaminergic neurons exhibited a depolarized ΔΨ(m). In contrast to long thread-like mitochondria of wild-type neurons, fragmented mitochondria were observed from PINK1-null SN dopaminergic cells. Basal level of mitochondrial superoxide and oxidative stressor H(2)O(2)-induced ROS generation were significantly increased in PINK1-deficient dopaminergic neurons. Overexpression of wild-type PINK1 restored hyperpolarized ΔΨ(m) and thread-like mitochondrial morphology and inhibited ROS formation in PINK1-null dopaminergic cells. PARK6 mutant (G309D), (E417G) or (CΔ145) PINK1 failed to rescue mitochondrial dysfunction and inhibit oxidative stress in PINK1-deficient dopaminergic neurons. Mitochondrial toxin rotenone-induced cell death of dopaminergic neurons was augmented in PINK1-null SN neuronal culture. These results indicate that PINK1 is required for maintaining normal ΔΨ(m) and mitochondrial morphology of cultured SN dopaminergic neurons and exerts its neuroprotective effect by inhibiting ROS formation. Our study also provides the evidence that PARK6 mutant (G309D), (E417G) or (CΔ145) PINK1 is defective in regulating mitochondrial functions and attenuating ROS production of SN dopaminergic cells.


Asunto(s)
Mutación , Proteínas Quinasas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Potencial de la Membrana Mitocondrial , Ratones , Ratones Noqueados , Proteínas Quinasas/genética , Rotenona/toxicidad , Sustancia Negra/metabolismo
13.
Synapse ; 66(9): 823-31, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22623146

RESUMEN

UNLABELLED: [¹8F]AV-133 is a novel PET tracer for targeting the vesicular monoamine transporter 2 (VMAT2). The aim of this study is to characterize and quantify the loss of monoamine neurons with [¹8F]AV-133 in the MPTP-lesioned PD mouse model using animal PET imaging and ex vivo quantitative autoradiography (QARG). METHODS: Optimal imaging time window of [¹8F]AV-133 was first determined in normal C57BL/6 mice (n = 3) with a 90-min dynamic scan. The reproducibility of [¹8F]AV-133 PET imaging was evaluated by performing a test-retest study within 1 week for the normal group (n = 6). For MPTP-lesioned studies, normal, and MPTP-treated [25 mg mg/kg once (Group A) and twice (Group B), respectively, daily for 5 days, i.p., groups of four normal and MPTP-treated] mice were used. PET imaging studies at baseline and at Day 4 post-MPTP injections were performed at the optimal time window after injection of 11.1 MBq [¹8F]AV-133. Specific uptake ratio (SUr) of [¹8F]AV-133 was calculated by [(target uptake-cerebellar uptake)/cerebellar uptake] with cerebellum as the reference region. Ex vitro QARG and immunohistochemistry (IHC) studies with tyrosine hydroxylase antibody were carried out to confirm the abundance of dopaminergic neurons. RESULTS: The variability between [¹8F]AV-133 test-retest striatal SUr was 6.60 ± 3.61% with less than 5% standard deviation between animals (intervariability). The percentages of MPTP lesions were Group A 0.94 ± 0.29, -42.1% and Group B 0.65 ± 0.09, -60.4%. By QARG, specific binding of [¹8F]AV-133 was reduced relative to the control groups by 50.6% and 60.7% in striatum and by 30.6% and 46.4% in substantia nigra (Groups A and B, respectively). Relatively small [¹8F]AV-133 SUr decline was noted in the serotonin and norepinephrine-enriched regions (7.9% and 9.4% in mid-brain). Results obtained from IHC consistently confirmed the sensitivity and selectivity of dopaminergic neuron loss after MPTP treatment. CONCLUSIONS: [¹8F]AV-133 PET SUr displayed a high test-retest stability. The SUr significantly declined in the caudate putamen but not in the hypothalamus and midbrain regions after MPTP treatment in the mouse brain. The results obtained for QARG and IHC were consistent and correlated well with the PET imaging studies. On the basis of these concordant results, we find that [¹8F]AV-133 should serve as a useful and reliable PET tracer for evaluating nigrostriatal degeneration.


Asunto(s)
Intoxicación por MPTP/diagnóstico por imagen , Tetrabenazina/análogos & derivados , Proteínas de Transporte Vesicular de Monoaminas/análisis , Animales , Sitios de Unión , Encéfalo/diagnóstico por imagen , Modelos Animales de Enfermedad , Radioisótopos de Flúor/farmacocinética , Masculino , Ratones , Ratones Endogámicos C57BL , Tomografía de Emisión de Positrones/métodos , Tetrabenazina/farmacocinética
14.
Am J Med Genet B Neuropsychiatr Genet ; 159B(2): 183-91, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22213678

RESUMEN

Mutations of PLA2G6 gene have been lately proposed to be the causative gene for PARK14 in patients with autosomal recessive young-onset parkinsonism (YOPD). The role of PLA2G6 mutations as a risk factor for Parkinson's disease is not clear. To study the PLA2G6 mutations in PARK14-linked patients and its association with the onset of sporadic Parkinson's disease (sPD), sequencing and gene dosage analyses were carried out in 25 patients (onset age ≦30 years) then the identified variants were assessed in 956 sporadic PD (sPD) patients and 802 age-matched healthy controls. Four genetic variants were identified; one patient had homozygous c.991G > T (p.Asp331Tyr) mutation, two had compound heterozygous c.991G > T/c.1077G > A (p.Met358IlefsX) mutation, one had single c.1976A > G (p.Asn659Ser) mutation, and one patient had an exon 1 hetero-deletion. The c.1077G > A mutation resulted in a 4-bp deletion in leukocyte mRNA by activating a cryptic splice site in exon 7. Only p.Asp331Tyr was identified in four sPD patients and four controls. The onset age for PLA2G6 mutation carriers was younger than that for sPD (29.86 ± 8.59 vs. 56.84 ± 11.33 years, P = 0.0002). The analysis of previously reported PARK14 patients revealed that those who carried a truncated mutation tended to have a complicated phenotype and atrophies of cortex and cerebellum. In conclusion, PLA2G6 mutation was the second common genetic cause after PRKN mutation in our YOPD patients and might be a risk factor for early-onset PD in Han Chinese. Additionally, mutation data should be interpreted carefully because even a synonymous mutation could cause abnormal mRNA splicing.


Asunto(s)
Fosfolipasas A2 Grupo VI/genética , Mutación/genética , Trastornos Parkinsonianos/genética , Ubiquitina-Proteína Ligasas/genética , Adolescente , Adulto , Edad de Inicio , Estudios de Casos y Controles , Niño , Análisis Mutacional de ADN , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Fenotipo , Reacción en Cadena de la Polimerasa , Adulto Joven
15.
Neurotoxicology ; 88: 178-186, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34774656

RESUMEN

Parkinson's disease (PD) and carbon monoxide (CO) poisoning demonstrate parkinsonian features related to presynaptic dopaminergic deficits. However, their clinical features and treatment responses are different, indicating other roles of neurotransmitters in symptomatic modulation. In this study, we used 18F-FP-(+)-DTBZ PET to explore vesicular monoamine transporter type 2 (VMAT2) distributions in 31 patients with PD, 39 patients with CO poisoning and parkinsonian features (n = 39), and 24 age-matched controls. In addition to the disease-specific VMAT2 topographies in PD and CO poisoning, we also constructed feature-specific functional networks. The cardinal features included tremor, rigidity, akinesia, and rapid alternating movements (RAM), and the overall motor severity was scored using Unified Parkinson Disease Rating Scale (UPDRS) and modified Hoehn-Yahr (mH-Y) Scale scores. Our results suggested that a reduction in VMAT2 signals in the caudate, amygdala, and hippocampus were more specific to CO poisoning, while low uptake in the putamen and substantia nigra was more specific to PD. UPDRS and mH-Y scores were related to striatum signals in both groups and hippocampus and raphe in the CO poisoning group. With regards to the cardinal features, the putamen was related to akinesia in both groups. The substantia nigra was related to rigidity in PD, and the caudate and nucleus accumbens were related to akinesia, RAM and rigidity in CO poisoning. Our study enhances the current understanding of different patterns of monoaminergic terminal deficits in patients with CO poisoning and PD.


Asunto(s)
Intoxicación por Monóxido de Carbono/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Adulto , Anciano , Intoxicación por Monóxido de Carbono/complicaciones , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/etiología , Tomografía de Emisión de Positrones , Adulto Joven
16.
Neurobiol Dis ; 41(2): 481-8, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21047555

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disease caused by polyglutamine-expanded ataxin-3. Previously, we prepared a SCA3 animal model by generating transgenic mice expressing disease-causing ataxin-3-Q79. Mutant ataxin-3-Q79 caused cerebellar malfunction of SCA3 transgenic mice by downregulating cerebellar mRNA expressions of proteins involved in synaptic transmission, signal transduction or regulating neuronal survival/differentiation. Histone acetylation, which is controlled by histone acetyltransferase and histone deacetylase (HDAC), plays an important role in regulating transcriptional activity. In the present study, we tested the hypothesis that ataxin-3-Q79 causes cerebellar transcriptional downregulation by inducing histone hypoacetylation and that HDAC inhibitor sodium butyrate (SB) alleviates ataxic symptoms of SCA3 transgenic mice by reversing ataxin-3-Q79-induced histone hypoacetylation and transcriptional repression. Compared to wild-type mice, H3 and H4 histones were hypoacetylated in the cerebellum of 6- to 8-month-old ataxin-3-Q79 transgenic mice, which displayed transcriptional downregulation and ataxic symptoms. Daily intraperitoneal administration of SB significantly reversed ataxin-3-Q79-induced histone hypoacetylation and transcriptional downregulation in the cerebellum of SCA3 transgenic mice. SB treatment also delayed the onset of ataxic symptoms, ameliorated neurological phenotypes and improved the survival rate of ataxin-3-Q79 transgenic mice. The present study provides the evidence that mutant ataxin-3-Q79 causes cerebellar transcriptional repression and ataxic symptoms of SCA3 transgenic mice by inducing hypoacetylation of histones H3 and H4. Our results suggest that sodium butyrate might be a promising therapeutic agent for SCA3.


Asunto(s)
Ácido Butírico/farmacología , Regulación hacia Abajo/genética , Inhibidores Enzimáticos/farmacología , Histona Desacetilasas/metabolismo , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/enzimología , Activación Transcripcional/efectos de los fármacos , Acetilación/efectos de los fármacos , Animales , Ataxina-1 , Ataxina-3 , Ataxinas , Ácido Butírico/uso terapéutico , Regulación hacia Abajo/efectos de los fármacos , Inhibidores Enzimáticos/uso terapéutico , Enfermedad de Machado-Joseph/genética , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Fenotipo , Proteínas Represoras/genética , Activación Transcripcional/fisiología
17.
Radiology ; 261(1): 210-7, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21771952

RESUMEN

PURPOSE: To examine the usefulness of diffusion kurtosis imaging for the diagnosis of Parkinson disease (PD). MATERIALS AND METHODS: Examinations were performed with the understanding and written consent of each subject, with local ethics committee approval, and in compliance with national legislation and Declaration of Helsinki guidelines. Diffusion-weighted magnetic resonance imaging was performed in 30 patients with idiopathic PD (mean age, 64.5 years ± 3.4 [standard deviation]) and 30 healthy subjects (mean age, 65.0 years ± 5.1). Mean kurtosis, fractional anisotropy, and mean, axial, and radial diffusivity of the basal ganglia were compared between the groups. Disease severity was assessed by using Hoehn and Yahr staging and the motor section of the Unified Parkinson's Disease Rating Scale (mean scores, 2.0 and 33.6, respectively). Receiver operating characteristic (ROC) analysis was used to compare the diagnostic accuracies of the indexes of interest. Pearson correlation coefficient analysis was used to correlate imaging findings with disease severity. RESULTS: Mean kurtosis in the putamen was higher in the PD group (0.93 ± 0.15) than in the control group (0.71 ± 0.09) (P < .000416). The area under the ROC curve (AUC) was 0.95 for both the ipsilateral putamen and the ipsilateral substantia nigra. The mean kurtosis for the ipsilateral substantia nigra had the best diagnostic performance (mean cutoff, 1.10; sensitivity, 0.92; specificity, 0.87). In contrast, AUCs for the tensor-derived indexes ranged between 0.43 (axial and radial diffusivity in substantia nigra) and 0.65 (fractional anisotropy in substantia nigra). CONCLUSION: Diffusion kurtosis imaging in the basal ganglia, as compared with conventional diffusion-tensor imaging, can improve the diagnosis of PD.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Enfermedad de Parkinson/diagnóstico , Anciano , Ganglios Basales/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
18.
Sci Rep ; 11(1): 14781, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285292

RESUMEN

Nonmotor symptoms (NMSs) cause major burden in patients with Parkinson's disease (PD). Previous NMSs progression studies mostly focused on the prevalence. We conducted a longitudinal study to identify the progression pattern by the severity. PD patients recruited from the outpatient clinics of a tertiary medical center were evaluated by the Unified Parkinson's Disease Rating Scale and Non-Motor Symptoms Scale (NMSS). A retrospective study with three-step analysis was performed. Step 1, the NMSs severity was compared among patients stratified by disease duration every 2 years up to 10 years. Step 2, patients with repeated tests in 2 years were categorized into 4 groups by the diseased duration of every 5 years. Step 3, the NMSS score changes in 6 years follow-up were determined, and the dosage of anti-PD drugs was compared to the NMSs severity changes. 676 patients completed the step 1 analysis, which showed a trend of NMSs worsening but not significant until the disease duration longer than 4-6 years. Furthermore, the severity did not change between repeated evaluations in 2 years in all patients. The progression became apparent after 6 years. Individual symptoms had different progression patterns and the increment of medications was independent to NMSs evolution. We demonstrated the NMSs severity progression in Taiwanese PD patients and the independence of the medications and NMSs progression.


Asunto(s)
Antiparkinsonianos/administración & dosificación , Enfermedad de Parkinson/tratamiento farmacológico , Anciano , Antiparkinsonianos/uso terapéutico , Progresión de la Enfermedad , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Enfermedad de Parkinson/psicología , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Taiwán , Centros de Atención Terciaria , Resultado del Tratamiento
19.
Front Nutr ; 8: 650053, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34277679

RESUMEN

Background: Lactobacillus plantarum PS128 (PS128) is a specific probiotic, known as a psychobiotic, which has been demonstrated to alleviate motor deficits and inhibit neurodegenerative processes in Parkinson's disease (PD)-model mice. We hypothesize that it may also be beneficial to patients with PD based on the possible mechanism via the microbiome-gut-brain axis. Methods: This is an open-label, single-arm, baseline-controlled trial. The eligible participants were scheduled to take 60 billion colony-forming units of PS128 once per night for 12 weeks. Clinical assessments were conducted using the Unified Parkinson's Disease Rating Scale (UPDRS), modified Hoehn and Yahr scale, and change in patient "ON-OFF" diary recording as primary outcome measures. The non-motor symptoms questionnaire, Beck depression inventory-II, patient assessment of constipation symptom, 39-item Parkinson's Disease Questionnaire (PDQ-39), and Patient Global Impression of Change (PGI-C) were assessed as secondary outcome measures. Results: Twenty-five eligible patients (32% women) completed the study. The mean age was 61.84 ± 5.74 years (range, 52-72), mean disease duration was 10.12 ± 2.3 years (range, 5-14), and levodopa equivalent daily dosage was 1063.4 ± 209.5 mg/daily (range, 675-1,560). All patients remained on the same dosage of anti-parkinsonian and other drugs throughout the study. After 12 weeks of PS128 supplementation, the UPDRS motor scores improved significantly in both the OFF and ON states (p = 0.004 and p = 0.007, respectively). In addition, PS128 intervention significantly improved the duration of the ON period and OFF period as well as PDQ-39 values. However, no obvious effect of PS128 on non-motor symptoms of patients with PD was observed. Notably, the PGI-C scores improved in 17 patients (68%). PS128 intervention was also found to significantly reduce plasma myeloperoxidase and urine creatinine levels. Conclusion: The present study demonstrated that PS128 supplementation for 12 weeks with constant anti-parkinsonian medication improved the UPDRS motor score and quality of life of PD patients. We suggest that PS128 could serve as a therapeutic adjuvant for the treatment of PD. In the future, placebo-controlled studies are needed to further support the efficacy of PS128 supplementation. Clinical Trial Registration: https://clinicaltrials.gov/, identifier: NCT04389762.

20.
Front Aging Neurosci ; 13: 625874, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815089

RESUMEN

Introduction: White matter degeneration may contribute to clinical symptoms of parkinsonism. Objective: We used fixel-based analysis (FBA) to compare the extent and patterns of white matter degeneration in different parkinsonian syndromes-including idiopathic Parkinson's disease (PD), multiple system atrophy (MSA), and progressive supranuclear palsy (PSP). Methods: This is a retrospective interpretation of prospectively acquired data of patients recruited in previous studies during 2008 and 2019. Diffusion-weighted images were acquired on a 3-Tesla scanner (diffusion weighting b = 1000 s/mm2-applied along either 64 or 30 non-collinear directions) from 53 patients with PD (men/women: 29/24; mean age: 65.06 ± 5.51 years), 47 with MSA (men/women: 20/27; mean age: 63.00 ± 7.19 years), and 50 with PSP men/women: 20/30; mean age: 65.96 ± 3.14 years). Non-parametric permutation tests were used to detect intergroup differences in fixel-related indices-including fiber density, fiber cross-section, and their combination. Results: Patterns of white matter degeneration were significantly different between PD and atypical parkinsonisms (MSA and PSP). Compared with patients with PD, those with MSA and PSP showed a more extensive white matter involvement-noticeably descending tracts from primary motor cortex to corona radiata and cerebral peduncle. Lesions of corpus callosum were specific to PSP and absent in both MSA and PD. Discussion: FBA identified specific patterns of white matter changes in MSA and PSP patients compared to PD. Our results proved the utility of FBA in evaluation of implied biological processes of white matter changes in parkinsonism. Our study set the stage for future applications of this technique in patients with parkinsonian syndromes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA