Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Annu Rev Entomol ; 69: 139-157, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37616600

RESUMEN

The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae), transmits the pathogen "Candidatus liberibacter solanacearum" (Lso), the putative causal agent of zebra chip disease (ZC). ZC is a disease of potato that reduces yield and quality and has disrupted integrated pest management programs in parts of the Americas and New Zealand. Advances in our understanding of the ecological factors that influence ZC epidemiology have been accelerated by the relatively recent identification of Lso and motivated by the steady increase in ZC distribution and the potential for devastating economic losses on a global scale. Management of ZC remains heavily reliant upon insecticides, which is not sustainable from the standpoint of insecticide resistance, nontarget effects on natural enemies, and regulations that may limit such tools. This review synthesizes the literature on potato psyllids and ZC, outlining recent progress, identifying knowledge gaps, and proposing avenues for further research on this important pathosystem of potatoes.


Asunto(s)
Hemípteros , Insecticidas , Solanum tuberosum , Animales , Enfermedades de las Plantas/prevención & control , Biología
2.
Ecol Appl ; 30(5): e02109, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32108396

RESUMEN

Characterizing factors affecting insect pest populations across variable landscapes is a major challenge for agriculture. In natural ecosystems, insect populations are strongly mediated by landscape and climatic factors. However, it has proven difficult to evaluate if similar factors predict pest dynamics in agroecosystems because control tactics exert strong confounding effects. We addressed this by assessing whether species distribution models could effectively characterize dynamics of an insect pest in intensely managed agroecosystems. Our study used a regional multi-year data set to assess landscape and climatic drivers of potato psyllid (Bactericera cockerelli) populations, which are often subjected to calendar-based insecticide treatments because they transmit pathogens to crops. Despite this, we show that psyllid populations were strongly affected by landscape and climatic factors. Psyllids were more abundant in landscapes with high connectivity, low crop diversity, and large natural areas. Psyllid population dynamics were also mediated by climatic factors, particularly precipitation and humidity. Our results show that many of the same factors that drive insect population dynamics in natural ecosystems can have similar effects in an intensive agroecosystem. More broadly, our study shows that models incorporating landscape and climatic factors can describe pest populations in agroecosystems and may thus promote more sustainable pest management.


Asunto(s)
Ecosistema , Hemípteros , Animales , Insectos Vectores , Insectos , Dinámica Poblacional
3.
J Insect Sci ; 20(2)2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32294181

RESUMEN

The potato/tomato psyllid Bactericera cockerelli (Sulc) transmits 'Candidatus Liberibacter solanacearum' (Lso) (also known as 'Candidatus Liberibacter psyllaurous'), the bacterium associated with zebra chip disease (ZC) in potato. When disease incidence is high, ZC causes large economic losses through reductions in potato yield and tuber quality. No commercial potato variety has been found totally resistant to the pathogen. We evaluated host acceptance behaviors using no-choice assays on three breeding clones derived from Solanum chacoense Bitter with putative tolerance to Lso and/or ZC as part of an effort to determine whether the disease tolerance observed in those breeding clones was related to effects on psyllid settling behavior. We also counted the number of eggs laid and nymphs hatched on the different genotypes to observe any differences in reproduction. The potato variety 'Russet Burbank' was used as a susceptible control. Probing frequency and female walking duration were greater on Russet Burbank than the other genotypes. Oviposition did not differ among genotypes. However, female psyllids on two of the Lso-tolerant genotypes displayed reduced fertility 18-24 d after confinement with a male, relative to females on Russet Burbank. These results suggest that although the germplasms display minor abiotic activity on psyllid fertility, tolerance to Lso may be more strongly linked with plant tolerance to the pathogen rather than effects on host acceptance behaviors.


Asunto(s)
Hemípteros/fisiología , Enfermedades de las Plantas/microbiología , Rhizobiaceae/fisiología , Solanum tuberosum , Animales , Antibiosis/genética , Femenino , Genotipo , Hemípteros/microbiología , Locomoción , Masculino , Solanum tuberosum/genética
4.
Plant Dis ; 103(10): 2587-2591, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31432751

RESUMEN

'Candidatus Liberibacter solanacearum' (Lso) is an uncultured, phloem-associated bacterium causing a severe tuber disease in potato called zebra chip (ZC). Seven haplotypes of Lso have been described in different hosts, with haplotypes A and B found associated with infections in potato and tomato. In the field, Lso is transmitted by the potato psyllid (Bactericera cockerelli), and between 2011 and 2015, a significant change in Lso haplotype prevalence was previously reported in Idaho: from exclusively A haplotype found in tested psyllids in 2012 to mainly B haplotype found in collected psyllids in 2015. However, prevalence of Lso haplotypes in Idaho was not analyzed in potato tubers exhibiting symptoms of ZC. To fill in this knowledge gap, prevalence of Lso haplotypes was investigated in potato tubers harvested in southern Idaho between 2012 and 2018, and it was found to change from exclusively A haplotype in the 2012 season to an almost equal A and B haplotype distribution during the 2016 season. During the same period, haplotype distribution of Lso in psyllid vectors collected using yellow sticky traps also changed, but in psyllids, the shift from A haplotype of Lso to B haplotype was complete, with no A haplotype detected in 2016 to 2018. The changes in the haplotype prevalence of the Lso circulating in potato fields in southern Idaho may be, among other factors, responsible for a decrease in the ZC incidence in Idaho potato fields between an outbreak of the disease in 2012 and a very low level of ZC afterward.


Asunto(s)
Hemípteros , Rhizobiaceae , Solanum tuberosum , Animales , Haplotipos , Hemípteros/microbiología , Idaho , Rhizobiaceae/fisiología , Solanum tuberosum/microbiología
5.
J Insect Sci ; 18(3)2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29868781

RESUMEN

The sugarbeet root maggot, Tetanops myopaeformis (von Röder) (Diptera: Ulidiidae), is a major pest of sugar beet Beta vulgaris L. (Carophyllales: Amaranthaceae)in the United States and Canada. Larval feeding on roots can reduce both stand and yield. Current management practices are heavily reliant on chemical control. However, the carbamate and organophosphate insecticides that are commonly used against T. myopaeformis are being phased out of use. Host plant resistance against this pest shows promise, but difficulties with maintaining T. myopaeformis in culture have largely limited such studies to the field. A primary objective of this study was to develop protocols for rearing a laboratory colony of T. myopaeformis that would expedite assays aimed at screening for host plant resistance. Third (final) instar larvae were collected from the field and reared to the adult stage. These laboratory-reared adults laid eggs and ultimately produced a second generation of third-instar larvae in the lab. Adult flies reared from field-collected larvae were used to examine the modality of resistance of a known resistant variety by performing no-choice and paired-choice experiments alongside a susceptible variety in the greenhouse. Paired-choice tests showed no difference in oviposition rates between the two varieties, whereas no-choice tests showed significantly greater feeding damage and abundance of larvae on the susceptible variety. For the resistant variety examined here, we observed evidence of antibiosis, not antixenosis, as the putative modality of resistance. Our laboratory and greenhouse protocols can be used to expedite the process of developing varieties with resistance to this key pest of sugar beet.


Asunto(s)
Beta vulgaris/fisiología , Dípteros , Herbivoria , Oviposición , Animales , Femenino , Preferencias Alimentarias , Larva/crecimiento & desarrollo , Masculino
6.
Phytopathology ; 107(4): 491-498, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27938241

RESUMEN

There has been a recent shift in the prevalence of Potato virus Y (PVY) strains affecting potato with the ordinary strain PVYO declining and the recombinant strains PVYNTN and PVYN:O emerging in the United States. Multiple PVY strains are commonly found in potato fields and even in individual plants. Factors contributing to the emergence of the recombinant strains are not well defined but differential aphid transmission of strains from single and mixed infections may play a role. We found that the transmission efficiencies by Myzus persicae, the green peach aphid, of PVYNTN, PVYN:O, and PVYO varied depending on the potato cultivar serving as the virus source. Overall transmission efficiency was highest from sources infected with three virus strains, whereas transmission from sources infected with one or two virus strains was not significantly different. Two strains were concomitantly transmitted by individual aphids from many of the mixed-source combinations, especially if PVYO was present. Triple-strain infections were not transmitted by any single aphid. PVYO was transmitted most efficiently from mixed-strain infection sources. The data do not support the hypothesis that differential transmission of PVY strains by M. persicae is a major contributing factor in the emergence of recombinant PVY strains in the U.S. potato crop.


Asunto(s)
Áfidos/virología , Insectos Vectores/virología , Enfermedades de las Plantas/virología , Potyvirus/fisiología , Solanum tuberosum/virología , Animales
7.
Plant Dis ; 101(5): 822-829, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-30678563

RESUMEN

Zebra chip (ZC) disease, a serious threat to the potato industry, is caused by the bacterium 'Candidatus Liberibacter solanacearum' (Lso). Five haplotypes (hapA to hapE) of this pathogen have been described so far in different crops, with only hapA and hapB being associated with ZC in potato. Both haplotypes are vectored and transmitted to a variety of solanaceaeous plants by the tomato/potato psyllid, Bactericera cockerelli (Sulc). Psyllids are native to North America, and four haplotypes have been identified and named based on their predominant geographic association: Northwestern, Central, Western, and Southwestern. Although all psyllid haplotypes have been found in southern Idaho potato fields, data on relative haplotype abundances and dynamic changes in the fields over time have not previously been reported. Here, psyllid samples collected in Idaho potato fields from 2012 to 2015 were used to clarify spatial and temporal patterns in distribution and abundance of psyllid and Lso haplotypes. A shift from hapA toward hapB population of Lso was revealed during these four seasons, indicating possible evolution of Lso in Idaho fields. Although we confirmed that Western psyllids were the most abundant by far during the four seasons of observation, we also observed changes in abundance of other haplotypes, including increased diversity of psyllid haplotypes during 2015. Seasonal changes observed for the Northwestern and Central haplotypes could potentially be linked to psyllid migration and/or habitat changes. South-central Idaho exhibited more diversity in psyllid haplotypes than southwestern Idaho.

8.
Plant Dis ; 101(10): 1812-1818, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30676926

RESUMEN

Potato leaf roll virus (PLRV) can reduce tuber yield and quality in potato. Green peach aphid (Myzus persicae [Sulzer]) and potato aphid (Macrosiphum euphorbiae [Thomas]) are the two most important potato-colonizing PLRV vectors in the Pacific Northwest. We compared My. persicae and Ma. euphorbiae densities and PLRV incidences among potato varieties in the field to clarify the relationships between aphid abundance and PLRV incidence in plants. Aphids were sampled weekly over three years in the potato varieties Russet Burbank, Ranger Russet, and Russet Norkotah in a replicated field trial. In all years, My. persicae was more abundant than Ma. euphorbiae, representing at least 97% of samples. My. persicae densities did not differ among potato varieties across years; very low numbers of Ma. euphorbiae precluded such statistical comparisons for this species. PLRV infection did not differ significantly among potato varieties, although the percent of PLRV-infected plants differed among years when all varieties were combined (46% in 2013, 29% in 2011, 13% in 2012). For Ranger Russet and Russet Norkotah, PLRV incidence was positively correlated with aphid abundance as well as proportion of PLRV-positive aphids. In Russet Burbank, only aphid abundance was positively correlated with PLRV infection. Our results suggest that the three most commonly grown potato varieties in our region do not differ in their susceptibility to PLRV infection, and that aphid density was a consistent indicator of the risk of infection by this virus across varieties. Both of these findings can be used to hone PLRV monitoring and modeling efforts.


Asunto(s)
Áfidos , Interacciones Huésped-Parásitos , Insectos Vectores , Solanum tuberosum , Animales , Áfidos/fisiología , Áfidos/virología , Insectos Vectores/fisiología , Luteoviridae/fisiología , Noroeste de Estados Unidos , Enfermedades de las Plantas/prevención & control , Densidad de Población , Solanum tuberosum/clasificación , Solanum tuberosum/parasitología , Especificidad de la Especie
9.
J Insect Sci ; 17(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28423428

RESUMEN

Male-biased aggregations of sugar beet root maggot, Tetanops myopaeformis (Röder) (Diptera: Ulidiidae), flies were observed on utility poles near sugar beet (Beta vulgaris L. [Chenopodiaceae]) fields in southern Idaho; this contrasts with the approximately equal sex ratio typically observed within fields. Peak observation of mating pairs coincided with peak diurnal abundance of flies. Volatiles released by individual male and female flies were sampled from 08:00 to 24:00 hours in the laboratory using solid-phase microextraction and analyzed using gas chromatography/mass spectrometry (GC/MS). Eleven compounds were uniquely detected from males. Three of these compounds (2-undecanol, 2-decanol, and sec-nonyl acetate) were detected in greater quantities during 12:00-24:00 hours than during 08:00-12:00 hours. The remaining eight compounds uniquely detected from males did not exhibit temporal trends in release. Both sexes produced 2-nonanol, but males produced substantially higher (ca. 80-fold) concentrations of this compound than females, again peaking after 12:00 hours. The temporal synchrony among male aggregation behavior, peak mating rates, and release of certain volatile compounds by males suggest that T. myopaeformis flies exhibit lekking behavior and produce an associated pheromone. Field assays using synthetic blends of the putative aggregation pheromone showed evidence of attraction in both females and males.


Asunto(s)
Quimiotaxis/efectos de los fármacos , Dípteros/fisiología , Feromonas/farmacología , Atractivos Sexuales/farmacología , Conducta Sexual Animal , Animales , Beta vulgaris/crecimiento & desarrollo , Femenino , Idaho , Masculino , North Dakota , Feromonas/metabolismo , Atractivos Sexuales/metabolismo
10.
Plant Dis ; 100(7): 1364-1370, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30686186

RESUMEN

Curly top in sugar beet caused by Beet curly top virus (BCTV) is an important yield-limiting disease that can be reduced via neonicotinoid and pyrethroid insecticides. The length of efficacy of these insecticides is poorly understood; therefore, field experiments were conducted with the seed treatment Poncho Beta (clothianidin at 60 g a.i. + beta-cyfluthrin at 8 g a.i. per 100,000 seed) and foliar treatment Asana (esfenvalerate at 55.48 g a.i./ha). A series of four experiments at different locations in the same field were conducted in 2014 and repeated in a neighboring field in 2015, with four treatments (untreated check, Poncho Beta, Asana, and Poncho Beta + Asana) which were arranged in a randomized complete block design with eight replications. To evaluate efficacy, viruliferous (contain BCTV strains) beet leafhoppers were released 8, 9, 10, or 11weeks after planting for each experiment, which corresponded to 1, 2, 3, and 4 weeks after Asana application. Over both years, in 30 of 32 observation dates for treatments with Poncho Beta and 14 of 16 observation dates for Asana, visual curly top ratings decreased an average of 41 and 24%, respectively, with insecticide treatments compared with the untreated check. Over both years, in eight of eight experiments for treatments with Poncho Beta and six of eight experiments for Asana, root yields increased an average of 39 and 32%, respectively, with treatment compared with the untreated check. Over both years, the Poncho Beta treatments increased estimated recoverable sucrose (ERS) yield by 75% compared with the untreated check for weeks 8 and 9. By week 10, only the Poncho Beta + Asana treatment led to increases in ERS in both years, while the influence of increasing host resistance may have made other treatments more difficult to separate. When considering curly top symptoms, root yield, and ERS among all weeks and years, there was a tendency for the insecticides in the Poncho Beta + Asana treatment to complement each other to improve efficacy.

11.
Plant Dis ; 98(8): 1075-1080, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30708792

RESUMEN

Curly top in sugar beet is a serious problem that is caused by Beet curly top virus and other closely related species and transmitted by the beet leafhopper. In order to find a means of reducing curly top in sugar beet, 15 combinations of insecticide seed (Poncho, Poncho Beta, and Poncho Votivo) and foliar (Asana, Cyazypyr, Lorsban, Mustang, Scorpion, and Sivanto) treatments were evaluated versus an untreated check during the 2012 and 2013 growing seasons. An epiphytotic was created by releasing viruliferous beet leafhoppers 58 to 59 days after planting. The foliar sprays were applied 6 to 7 days before and again 6 to 8 days after leafhopper release. Seed treatments (active ingredient: clothianidin) were able to reduce symptoms by 26 to 42% and increase recoverable sucrose by 16 to 21%. The pyrethroids Asana and Mustang also performed well by reducing symptoms 22 to 56% and increasing yields 13 to 20%. The neonicotinoid seed treatments should be an effective way of supplementing host resistance for early-season (at least 59 days after planting) curly top control in sugar beet. The pyrethroid foliar applications could be used to extend curly top control during the midseason period and provide resistance management.

12.
Viruses ; 16(3)2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38543780

RESUMEN

An investigation of viruses circulating in populations of field and laboratory potato/tomato psyllids (Bactericera cockerelli) was conducted using high-throughput sequencing (HTS) technology and conventional RT-PCR. Three new viruses were discovered: one from the family Tymoviridae and two from the family Solemoviridae. A tymo-like virus sequence represented a nearly complete 6843 nt genome of a virus named Bactericera cockerelli tymo-like virus (BcTLV) that spanned five open reading frames (ORFs) which encoded RNA-dependent RNA polymerase (RdRP), helicase, protease, methyltransferase, and a capsid protein. Phylogenetic analyses placed the RdRP of BcTLV inside a divergent lineage of the viruses from the family Tymoviridae found in insect and plant hosts in a sister clade to the genera Tymovirus, Marafivirus, and Maculavirus. Four solemo-like virus sequences were identified in the HTS outputs, representing two new viruses. One virus found only in field-collected psyllids and named Bactericera cockerelli solemo-like virus 1 (BcSLV-1) had a 5479 nt genome which spanned four ORFs encoding protease and RdRP. Three solemo-like sequences displayed 87.4-99.7% nucleotide sequence identity among themselves, representing variants or strains of the same virus named Bactericera cockerelli solemo-like virus 2 (BcSLV-2). The genome of BcSLV-2 spanned only two ORFs that encoded a protease and an RdRP. Phylogenetic analysis placed the RdRPs of BcSLV-1 and BcSLV-2 in two separate lineages as sister clades to viruses from the genus Sobemovirus found in plant hosts. All three new psyllid viruses were found circulating in psyllids collected from potato fields in southern Idaho along with a previously identified Bactericera cockerelli picorna-like virus. Any possible role of the three viruses in controlling populations of the field psyllids remains to be elucidated.


Asunto(s)
Hemípteros , Solanum lycopersicum , Solanum tuberosum , Virus , Animales , Filogenia , Péptido Hidrolasas , ARN Polimerasa Dependiente del ARN , Enfermedades de las Plantas
13.
Plant Dis ; 96(8): 1159-1164, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30727055

RESUMEN

Curly top, caused by Curtovirus spp., is a widespread disease problem vectored by the beet leafhopper in semiarid sugar beet production areas. The insecticide seed treatment Poncho Beta has proven to be effective in controlling curly top in sugar beet but was only evaluated under light to moderate disease pressure. Thus, the insecticide seed treatments Poncho Beta, NipsIt INSIDE, and Cruiser Force were evaluated under severe curly top pressure (six viruliferous beet leafhoppers per plant) in field studies during the 2010 and 2011 growing seasons on two commercial sugar beet cultivars. In addition, the foliar insecticides Movento, Provado, and Scorpion were also evaluated. The seed treatments and Scorpion reduced curly top symptoms by 33 to 41% (P < 0.0001) and increased root yield by 55 to 95% (P < 0.0001), sucrose content by 6.5 to 7.2% (P = 0.0013 to <0.0001), and estimated recoverable sucrose by 58 to 96% (P < 0.0001) when compared with the untreated check. Movento and Provado did not improve control beyond that provided by Poncho Beta. Even under severe disease pressure 50 to 55 days after planting, neonicotinoid seed treatments can effectively reduce curly top, increase yield, and help protect against early-season insect pest pressure.

14.
Viruses ; 14(6)2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35746792

RESUMEN

Alfalfa is an important perennial forage crop in Idaho supporting dairy and cattle industries that is typically grown in the same field for as many as 4 years. Alfalfa stands of different ages were subjected to screening for viruses using high-throughput sequencing and RT-PCR. The two most common viruses found were alfalfa mosaic virus and bean leafroll virus, along with Medicago sativa amalgavirus, two alphapartitiviruses, and one deltapartitivirus. Additionally, a new flavi-like virus with an unusual genome organization was discovered, dubbed Snake River alfalfa virus (SRAV). The 11,745 nt, positive-sense (+) RNA genome of SRAV encodes a single 3835 aa polyprotein with only two identifiable conserved domains, an RNA-dependent RNA polymerase (RdRP) and a predicted serine protease. Notably, unlike all +RNA virus genomes in the similar size range, the SRAV polyprotein contained no predicted helicase domain. In the RdRP phylogeny, SRAV was placed inside the flavi-like lineage as a sister clade to a branch consisting of hepaci-, and pegiviruses. To the best of our knowledge, SRAV is the first flavi-like virus identified in a plant host. Although commonly detected in alfalfa crops in southern Idaho, SRAV sequences were also amplified from thrips feeding in alfalfa stands in the area, suggesting a possible role of Frankliniella occidentalis in virus transmission.


Asunto(s)
Virus ARN , Virus no Clasificados , Animales , Bovinos , Productos Agrícolas/genética , Virus ADN/genética , Medicago sativa , Poliproteínas , ARN , Virus ARN/genética , ARN Polimerasa Dependiente del ARN , Ríos , Virus no Clasificados/genética
15.
Pest Manag Sci ; 78(9): 3731-3745, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35415948

RESUMEN

Zebra chip disease (ZC), associated with the plant pathogenic bacterium 'Candidatus Liberibacter solanacearum' (psyllaurous) (CLso), is a major threat to global potato production. In addition to yield loss, CLso infection causes discoloration in the tubers, rendering them unmarketable. CLso is transmitted by the potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae). ZC is managed by prophylactic insecticide applications to control the vector, which is costly and carries environmental and human health risks. Given the expense, difficulty, and unsustainability of managing vector-borne diseases with insecticides, identifying sources of resistance to CLso and developing varieties that are resistant or tolerant to CLso and/or potato psyllids has become a major goal of breeding efforts. These efforts include field and laboratory evaluations of noncultivated germplasm and cultivars, studies of tubers in cold storage, detailed quantifications of biochemical responses to infection with CLso, possible mechanisms underlying insect resistance, and traditional examination of potato quality following infections. This review provides a brief history of ZC and potato psyllid, a summary of currently available tools to manage ZC, and a comprehensive review of breeding efforts for ZC and potato psyllid management within the greater context of Integrated Pest Management (IPM) strategies. © 2022 Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Hemípteros , Insecticidas , Rhizobiaceae , Solanum tuberosum , Animales , Hemípteros/fisiología , Humanos , Insectos Vectores/fisiología , Liberibacter , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Rhizobiaceae/fisiología , Solanum tuberosum/microbiología
16.
J Insect Sci ; 11: 161, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22239247

RESUMEN

Attraction of adult codling moths, Cydia pomonella (L.) (Lepidoptera: Tortricidae), to sweet baits has been well documented. However, beneficial effects of sugar feeding on moth fitness have not been demonstrated. Longevity, fecundity, and egg fertility were examined for female/male pairs of moths maintained with the following food regimens: water, sucrose water, honey water, apple juice, apple flesh, or starved, i.e., no food or water provided. Longevity and total fecundity were enhanced in all treatments relative to the starved treatment moths. Sucrose water, honey water, and apple juice treatments yielded the highest longevity, but total fecundity was highest for moths maintained on honey water or apple juice. Total egg fertility did not differ among treatments. However, egg fertility declined more gradually over the female lifespan for the three aqueous solution diets of sucrose water, honey water, and apple juice. Similarly, fecundity per day declined more gradually over time for honey water and apple juice treatments. Performance of moths maintained with apple flesh was generally intermediate between that of moths with water and the three aqueous solution treatments. This suggests that moths benefit from feeding on ripe apple flesh, although apple may be more difficult to ingest or its nutrients less concentrated compared to aqueous solutions. The results presented here may explain attraction of adult moths to sweet baits as well as to odors from ripe fruit, which may be a natural source of food in the fall.


Asunto(s)
Dieta , Longevidad , Mariposas Nocturnas/fisiología , Oviparidad , Animales , Femenino , Fertilidad , Miel , Masculino , Malus , Sacarosa
17.
J Insect Sci ; 11: 83, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21870969

RESUMEN

This study was conducted to obtain information on the cold hardiness of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), in Florida and to assess upper and lower temperature thresholds for oviposition. The psyllid is an important pest in citrus because it transmits the bacterial pathogens responsible for citrus greening disease, Huanglongbing, considered the most serious citrus disease worldwide. D. citri was first found in Florida during 1998, and the disease was discovered during 2005. Little was known regarding cold hardiness of D. citri, but Florida citrus is occasionally subjected to notable freeze events. Temperature and duration were each significant sources of variation in percent mortality of D. citri subjected to freeze events. Relatively large percentages of adults and nymphs survived after being exposed for several hours to temperatures as low as -5 to -6 °C. Relatively large percentages of eggs hatched after being exposed for several hours to temperatures as low as -8 °C. Research results indicated that adult D. citri become cold acclimated during the winter through exposure to cooler winter temperatures. There was no evidence that eggs became cold acclimated during winter. Cold acclimation in nymphs was not investigated. Research with adult D. citri from laboratory and greenhouse colonies revealed that mild to moderate freeze events were usually nonlethal to the D. citri irrespective of whether they were cold acclimated or not. Upper and lower temperature thresholds for oviposition were investigated because such information may be valuable in explaining the geographic distribution and potential spread of the pest from Florida as well as how cooler winter temperatures might limit population growth. The estimated lower and upper thresholds for oviposition were 16.0 and 41.6 °C, respectively; the estimated temperature of peak oviposition over a 48 h period was 29.6 °C.


Asunto(s)
Congelación , Hemípteros/fisiología , Oviposición , Animales , Femenino , Masculino , Ninfa/fisiología , Óvulo/fisiología
18.
Environ Entomol ; 50(2): 382-389, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33439964

RESUMEN

Zebra chip, is a potato disease associated with the bacterium 'Candidatus Liberibacter solanacearum' (Lso) and vectored by the potato psyllid, Bactericera cockerelli Sulc. Potato psyllids are native to North America, where four haplotypes have been described. They are able to colonize a wide range of solanaceous species, crops, and weeds. The epidemiology of zebra chip disease is still poorly understood and might involve the different haplotypes of psyllids as well as two haplotypes of Lso. As several perennial weeds have been recognized as potential host for potato psyllids and Lso, a yearly monitoring of several patches of bittersweet nightshade (Solanum dulcamara) and field bindweed (Convolvulus arvensis) located in the potato-growing region of southern Idaho was conducted from 2013 to 2017, to gain insight into psyllid dynamics in non-potato hosts and Lso presence in the fields. Potato psyllids caught on each host were individually tested for Lso, and a subset were haplotyped based on the CO1 gene, along with the haplotyping of Lso in positive samples. On bittersweet nightshade, the Northwestern haplotype was numerically dominant, with around 2.7% of psyllids found to be carrying either Lso haplotype A or B, suggesting a limited role in zebra chip persistence, which has infected Idaho fields at a low occurrence since the 2012 outbreak. Field bindweed was found to be a transient, non-overwintering host for potato psyllid of Northwestern, Western and Central haplotypes late in the season, suggesting minor, if any, role in persistence of Lso and field infestation by potato psyllids.


Asunto(s)
Hemípteros , Rhizobiaceae , Solanum tuberosum , Animales , Haplotipos , Idaho , Liberibacter , América del Norte , Enfermedades de las Plantas , Rhizobiaceae/genética
19.
Sci Rep ; 11(1): 2242, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33500488

RESUMEN

Potato virus Y (PVY) and zebra chip (ZC) disease are major threats to solanaceous crop production in North America. PVY can be spread by aphid vectors and through vegetative propagation in potatoes. ZC is associated with "Candidatus Liberibacter solanacearum" (Lso), which is transmitted by the tomato/potato psyllid, Bactericera cockerelli Sulc (Hemiptera: Triozidae). As these two pathosystems may co-occur, we studied whether the presence of one virus strain, PVY°, affected the host preference, oviposition, and egg hatch rate of Lso-free or Lso-carrying psyllids in tomato plants. We also examined whether PVY infection influenced Lso transmission success by psyllids, Lso titer and plant chemistry (amino acids, sugars, and phytohormones). Lso-carrying psyllids showed a preference toward healthy hosts, whereas the Lso-free psyllids preferentially settled on the PVY-infected tomatoes. Oviposition of the Lso-carrying psyllids was lower on PVY-infected than healthy tomatoes, but Lso transmission, titer, and psyllid egg hatch were not significantly affected by PVY. The induction of salicylic acid and its related responses, and not nutritional losses, may explain the reduced attractiveness of the PVY-infected host to the Lso-carrying psyllids. Although our study demonstrated that pre-existing PVY infection can reduce oviposition by the Lso-carrying vector, the preference of the Lso-carrying psyllids to settle on healthy hosts could contribute to Lso spread to healthy plants in the presence of PVY infection in a field.


Asunto(s)
Oviposición/fisiología , Enfermedades de las Plantas/virología , Potyvirus/patogenicidad , Solanum tuberosum/virología , Animales , Ácido Salicílico
20.
Environ Entomol ; 49(1): 33-48, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31838490

RESUMEN

Strip tillage, in which tillage and seedbed preparation are limited to a narrow band where the subsequent crop is planted, provides many potential agronomic benefits, including reduced fuel and labor costs, reduced erosion, and improved soil tilth. Lower soil disturbance and enhanced water retention associated with strip tillage also may affect density and diversity of predatory arthropods, which have been little studied in sugar beet. We examined the effects of tillage (conventional versus strip) on the predatory epigeal arthropod fauna in sugar beet. Studies were conducted over three growing seasons (2010-2012) in Idaho using both fenced and unfenced pitfall traps to sample arthropods. Unfenced pitfall traps often captured a greater activity density and richness of predators, and showed no bias of higher captures in conventionally tilled plots as has been shown elsewhere. Total density of predators was higher in strip tillage only during 2011. Density and species richness of carabid beetles did not differ between tillage treatments during the course of the study. Density of the other major taxa (staphylinid beetles, spiders, and Opiliones) was higher under strip tillage during some years, especially early in the season, but richness showed little or no relationship with tillage. Predaceous arthropods might be favored by enhanced ground cover, higher humidity, more moderate temperatures, and/or less habitat disturbance associated with strip-tilled plots. The results suggest that certain groups of soil-dwelling predatory arthropods can be favored by strip tillage in sugar beet, which further adds to the benefits of conservation tillage in this system.


Asunto(s)
Artrópodos , Beta vulgaris , Agricultura , Animales , Idaho , Azúcares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA