Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Brain Mapp ; 45(1): e26544, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38041476

RESUMEN

Neuromelanin-sensitive magnetic resonance imaging quantitative analysis methods have provided promising biomarkers that can noninvasively quantify degeneration of the substantia nigra in patients with Parkinson's disease. However, there is a need to systematically evaluate the performance of manual and automated quantification approaches. We evaluate whether spatial, signal-intensity, or subject specific abnormality measures using either atlas based or manually traced identification of the substantia nigra better differentiate patients with Parkinson's disease from healthy controls using logistic regression models and receiver operating characteristics. Inference was performed using bootstrap analyses to calculate 95% confidence interval bounds. Pairwise comparisons were performed by generating 10,000 permutations, refitting the models, and calculating a paired difference between metrics. Thirty-one patients with Parkinson's disease and 22 healthy controls were included in the analyses. Signal intensity measures significantly outperformed spatial and subject specific abnormality measures, with the top performers exhibiting excellent ability to differentiate patients with Parkinson's disease and healthy controls (balanced accuracy = 0.89; area under the curve = 0.81; sensitivity =0.86; and specificity = 0.83). Atlas identified substantia nigra metrics performed significantly better than manual tracing metrics. These results provide clear support for the use of automated signal intensity metrics and additional recommendations. Future work is necessary to evaluate whether the same metrics can best differentiate atypical parkinsonism, perform similarly in de novo and mid-stage cohorts, and serve as longitudinal monitoring biomarkers.


Asunto(s)
Melaninas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/patología , Sensibilidad y Especificidad , Imagen por Resonancia Magnética/métodos , Biomarcadores/metabolismo , Sustancia Negra/metabolismo
2.
Mov Disord ; 38(7): 1262-1272, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37157056

RESUMEN

BACKGROUND: Cerebrovascular dysfunction in Parkinson's disease (PD) is heterogeneous and may contribute to disease pathophysiology or progression. There is a need to understand the mechanisms by which cerebrovascular dysfunction is altered in participants with PD. OBJECTIVES: The objective of this study is to test the hypothesis that participants with PD exhibit a significant reduction in the ability of the cerebral vessels to dilate in response to vasoactive challenges relative to healthy controls (HC). METHODS: The current study uses a vasodilatory challenge while participants undergo functional magnetic resonance imaging to quantify the amplitude and delay of cerebrovascular reactivity in participants with PD relative to age and sex-matched HC. An analysis of covariance was used to evaluate differences in cerebrovascular reactivity amplitude and latency between PD participants and HC. RESULTS: A significant main effect of group was observed for whole-brain cerebrovascular reactivity amplitude (F(1, 28) = 4.38, p = 0.046, Hedge's g = 0.73) and latency (F(1, 28) = 16.35, p < 0.001, Hedge's g = 1.42). Participants with PD exhibited reduced whole-brain amplitude and increased latencies in cerebrovascular reactivity relative to HC. The evaluation of regional effects indicates that the largest effects were observed in the cuneus, precuneus, and parietal regions. CONCLUSIONS: PD participants exhibited reduced and delayed cerebrovascular reactivity. This dysfunction may play an important role in chronic hypoxia, neuroinflammation, and protein aggregation, mechanisms that could lead to disease progression. Cerebrovascular reactivity may serve as an important biomarker and target for future interventions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Humanos , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Lóbulo Occipital , Lóbulo Parietal
3.
Brain Inj ; 35(2): 226-232, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33459038

RESUMEN

Objective: Concussion is associated with dysautonomia, altered blood pressure (BP) control, and may cause Orthostatic Hypotension (OH). We measured prevalence of OH using the 1-minute supine-to-standing OH Test in adolescents with concussion and controls.Participants: Adolescents within 10 days of injury (Concussion Group, n = 297, 15.0 ± 1.7 years, 59% male) were compared with controls (Control Group, n = 214, 15.0 ± 1.5 years, 58% male).Methods: BP, heart rate (HR), and complaints of lightheadedness/dizziness were measured after 2-minute supine and 1-minute standing. Control Group was assessed once. Concussion Group was assessed twice; (1) initial visit (mean 6.0 ± 3 days-since-injury) and (2) after clinical recovery (mean 46.3 ± 42 days-since-injury).Results: Initial visit; Concussion Group reported feeling lightheaded/dizzy on postural change more often than the Control Group (37% vs 4%, p < .001) but did not differ in meeting standard OH criteria (3% vs 5%, p = .32). Experiencing symptoms did not correlate with meeting OH criteria, but correlated with abnormal vestibulo-ocular reflex. After clinical recovery; Concussion Group did not differ in experiencing lightheaded/dizziness on postural change than controls (4%, p = .65).Conclusion: Adolescents commonly experience orthostatic intolerance after concussion without meeting the standard criteria for OH.


Asunto(s)
Conmoción Encefálica , Hipotensión Ortostática , Adolescente , Presión Sanguínea , Conmoción Encefálica/complicaciones , Mareo/etiología , Femenino , Frecuencia Cardíaca , Humanos , Hipotensión Ortostática/etiología , Masculino
4.
Neuroimage ; 209: 116487, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31874258

RESUMEN

Very few studies have investigated neuroanatomical correlates of "everyday" creative achievement in cohorts of normal subjects. In previous research, we first showed that scores on the Creative Achievement Questionnaire (CAQ) were associated with lower cortical thickness within the left lateral orbitofrontal gyrus (LOFG), and increased thickness of the right angular gyrus (AG) (Jung et al., 2010). Newer studies found the CAQ to be associated with decreased volume of the rostral anterior cingulate cortex (ACC), and that artistic and scientific creativity was associated with increased and decreased volumes within the executive control network and salience network (Shi et al., 2017). We desired to replicate and extend our previous study in a larger cohort (N â€‹= â€‹248), comprised of subjects studying and working in science, technology, engineering, and math (STEM). Subjects were young (Range â€‹= â€‹16-32; Mean age â€‹= â€‹21.8; s.d. â€‹= â€‹3.5) all of whom were administered the CAQ, from which we derived artistic and scientific creativity factors. All subjects underwent structural MRI on a 3 â€‹T scanner from which cortical thickness, area, and volume measures were obtained using FreeSurfer. Our results showed mostly cortical thinning in relation to total, scientific, and artistic creative achievement encompassing many regions involved in the cognitive control network (CCN) and default mode network (DMN).


Asunto(s)
Logro , Corteza Cerebral/anatomía & histología , Creatividad , Red Nerviosa/anatomía & histología , Neuroimagen , Adolescente , Adulto , Arte , Corteza Cerebral/diagnóstico por imagen , Ingeniería , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Matemática , Red Nerviosa/diagnóstico por imagen , Ciencia , Tecnología , Adulto Joven
5.
Neuroimage ; 208: 116293, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31785421

RESUMEN

Creative cognition, as measured through divergent thinking (DT), offers insight into one's ability to generate novel ideas. Relatively little work has been done exploring the relationship between creative idea generation tasks and white matter integrity via fractional anisotropy (FA). Our previous work has shown that higher scores on DT tasks were related to reduced fractional anisotropy (FA) within the left hemisphere anterior thalamic radiation (Jung et al., 2010). However, Takeuchi et al., 2010, found positive correlations with FA and DT tasks in the prefrontal cortex and genu of the corpus callosum. The present study assessed subjects studying or working in science, technology, engineering and mathematics (STEM; N â€‹= â€‹178) for correlations in white matter FA, as related to a measure of DT. Healthy normal subjects aged (16-32 years, mean age â€‹= â€‹22.0 â€‹± â€‹3.8; F â€‹= â€‹89/178). Three idea generation DT measures were scored by three raters (α â€‹= â€‹0.71) using the consensual assessment technique, from which a composite creativity index (CCI) was derived. We found that CCI was inversely related to FA (all p â€‹< â€‹0.05, controlling for age, sex, and full scale intelligence, and corrected for multiple comparisons using family wise error), within the left hemisphere inferior frontal gyrus, inferior fronto-occipital fasciculus, cingulate gyrus, inferior longitudinal fasciculus, and right hemisphere uncinate fasciculus. These results are consistent with our previous findings, implicating lower FA in white matter regions linking broad cortical networks, now established in a much larger sample of normal healthy subjects.


Asunto(s)
Corteza Cerebral/anatomía & histología , Cognición/fisiología , Pensamiento/fisiología , Sustancia Blanca/anatomía & histología , Adolescente , Adulto , Corteza Cerebral/diagnóstico por imagen , Estudios de Cohortes , Creatividad , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
6.
Neuroimage ; 218: 116940, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32422402

RESUMEN

While the behavior of "being musically creative"- improvising, composing, songwriting, etc.-is undoubtedly a complex and highly variable one, recent neuroscientific investigation has offered significant insight into the neural underpinnings of many of the creative processes contributing to such behavior. A previous study from our research group (Bashwiner et al., 2016), which examined two aspects of brain structure as a function of creative musical experience, found significantly increased cortical surface area or subcortical volume in regions of the default-mode network, a motor planning network, and a "limbic" network. The present study sought to determine how these regions coordinate with one another and with other regions of the brain in a large number of participants (n â€‹= â€‹218) during a task-neutral period, i.e., during the "resting state." Deriving from the previous study's results a set of eleven regions of interest (ROIs), the present study analyzed the resting-state functional connectivity (RSFC) from each of these seed regions as a function of creative musical experience (assessed via our Musical Creativity Questionnaire). Of the eleven ROIs investigated, nine showed significant correlations with a total of 22 clusters throughout the brain, the most significant being located in bilateral cerebellum, right inferior frontal gyrus, midline thalamus (particularly the mediodorsal nucleus), and medial premotor regions. These results support prior reports (by ourselves and others) implicating regions of the default-mode, executive, and motor-planning networks in musical creativity, while additionally-and somewhat unanticipatedly-including a potentially much larger role for the salience network than has been previously reported in studies of musical creativity.


Asunto(s)
Creatividad , Música/psicología , Vías Nerviosas/fisiología , Descanso/fisiología , Adolescente , Adulto , Mapeo Encefálico , Función Ejecutiva , Femenino , Humanos , Sistema Límbico/diagnóstico por imagen , Sistema Límbico/fisiología , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Vías Nerviosas/diagnóstico por imagen , Encuestas y Cuestionarios , Adulto Joven
7.
Neuroimage ; 218: 116921, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32438051

RESUMEN

Nearly everyone has the ability for creative thought. Yet, certain individuals create works that propel their fields, challenge paradigms, and advance the world. What are the neurobiological factors that might underlie such prominent creative achievement? In this study, we focus on morphometric differences in brain structure between high creative achievers from diverse fields of expertise and a 'smart' comparison group of age-, intelligence-, and education-matched average creative achievers. Participants underwent a high-resolution structural brain imaging scan and completed a series of intelligence, creative thinking, personality, and creative achievement measures. We examined whether high and average creative achievers could be distinguished based on the relationship between morphometric brain measures (cortical area and thickness) and behavioral measures. Although participants' performance on the behavioral measures did not differ between the two groups aside from creative achievement, the relationship between posterior parietal cortex morphometry and creativity, intelligence, and personality measures depended on group membership. These results suggest that extraordinary creativity may be associated with measurable structural brain differences, especially within parietal cortex.


Asunto(s)
Encéfalo/anatomía & histología , Creatividad , Adulto , Mapeo Encefálico/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad
8.
J Psychiatry Neurosci ; 45(6): 430-440, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32869961

RESUMEN

Background: Functional underpinnings of cognitive control deficits in unbiased samples (i.e., all comers) of patients with psychotic spectrum disorders (PSD) remain actively debated. While many studies suggest hypofrontality in the lateral prefrontal cortex (PFC) and greater deficits during proactive relative to reactive control, few have examined the full hemodynamic response. Methods: Patients with PSD (n = 154) and healthy controls (n = 65) performed the AX continuous performance task (AX-CPT) during rapid (460 ms) functional neuroimaging and underwent full clinical characterization. Results: Behavioural results indicated generalized cognitive deficits (slower and less accurate) across proactive and reactive control conditions in patients with PSD relative to healthy controls. We observed a delayed/prolonged neural response in the left dorsolateral PFC, the sensorimotor cortex and the superior parietal lobe during proactive control for patients with PSD. These proactive hemodynamic abnormalities were better explained by negative rather than by positive symptoms or by traditional diagnoses according to the Diagnostic and Statistical Manual of Mental Disorders Fourth Edition, Text Revision (DSM-IV-TR), with subsequent simulations unequivocally demonstrating how these abnormalities could be erroneously interpreted as hypoactivation. Conversely, true hypoactivity, unassociated with clinical symptoms or DSM-IV-TR diagnoses, was observed within the ventrolateral PFC during reactive control. Limitations: In spite of guidance for AX-CPT use in neuroimaging studies, one-third of patients with PSD could not perform the task above chance and were more clinically impaired. Conclusion: Current findings question the utility of the AX-CPT for neuroimaging-based appraisal of cognitive control across the full spectrum of patients with PSD. Previously reported lateral PFC "hypoactivity" during proactive control may be more indicative of a delayed/prolonged neural response, important for rehabilitative purposes. Negative symptoms may better explain certain behavioural and hemodynamic abnormalities in patients with PSD relative to DSM-IV-TR diagnoses.


Asunto(s)
Función Ejecutiva/fisiología , Neuroimagen Funcional/normas , Lóbulo Parietal/fisiopatología , Corteza Prefrontal/fisiopatología , Desempeño Psicomotor/fisiología , Trastornos Psicóticos/fisiopatología , Corteza Sensoriomotora/fisiopatología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Lóbulo Parietal/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen , Trastornos Psicóticos/diagnóstico por imagen , Corteza Sensoriomotora/diagnóstico por imagen , Adulto Joven
9.
J Head Trauma Rehabil ; 35(4): 270-278, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32108710

RESUMEN

OBJECTIVE: To evaluate diagnostic/prognostic implications of neurosensory testing during the subacute stage in patients with pediatric mild traumatic brain injury (pmTBI). SETTING: Recruitment from pediatric emergency department and urgent care clinics, assessment in a controlled environment. PARTICIPANTS: In total, 146 pmTBI patients evaluated 7.4 ± 2.3 days and approximately 4 months postinjury; 104 age/sex-matched healthy controls (HCs) at equivalent time points. DESIGN: Prospective cohort study. MAIN MEASURES: Neurosensory examination based on sequence of 10 established tests of vestibular-ocular, oculomotor, vestibulospinal, and visual functioning. RESULTS: The amount of symptom provocation (positive change from pretest symptomatology) was significantly increased in pmTBI relative to HCs on every subtest 1 week postinjury, as were deficits in monocular accommodative amplitude and King-Devick Test errors. However, symptom provocation did not meaningfully alter diagnostic sensitivity/specificity relative to more easily obtained pretest symptom ratings. Evidence of clinically significant symptom provocation 1 week postinjury improved sensitivity (Δ = +12.9%) of identifying patients with persistent postconcussive symptoms 4 months postinjury on an independent symptom measure. CONCLUSIONS: The diagnostic sensitivity/specificity of neurosensory testing in acutely concussed youth may be limited at 1 week postinjury as a function of natural recovery occurring in most emergency department cohorts. Neurosensory screening may have greater utility for identifying patients who experience delayed recovery.


Asunto(s)
Conmoción Encefálica , Síndrome Posconmocional , Adolescente , Conmoción Encefálica/complicaciones , Conmoción Encefálica/diagnóstico , Servicio de Urgencia en Hospital , Femenino , Humanos , Masculino , Síndrome Posconmocional/diagnóstico , Estudios Prospectivos , Calidad de Vida
10.
Hum Brain Mapp ; 40(13): 3843-3859, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31119818

RESUMEN

It has been known for decades that head motion/other artifacts affect the blood oxygen level-dependent signal. Recent recommendations predominantly focus on denoising resting state data, which may not apply to task data due to the different statistical relationships that exist between signal and noise sources. Several blind-source denoising strategies (FIX and AROMA) and more standard motion parameter (MP) regression (0, 12, or 24 parameters) analyses were therefore compared across four sets of event-related functional magnetic resonance imaging (erfMRI) and block-design (bdfMRI) datasets collected with multiband 32- (repetition time [TR] = 460 ms) or older 12-channel (TR = 2,000 ms) head coils. The amount of motion varied across coil designs and task types. Quality control plots indicated small to moderate relationships between head motion estimates and percent signal change in both signal and noise regions. Blind-source denoising strategies eliminated signal as well as noise relative to MP24 regression; however, the undesired effects on signal depended both on algorithm (FIX > AROMA) and design (bdfMRI > erfMRI). Moreover, in contrast to previous results, there were minimal differences between MP12/24 and MP0 pipelines in both erfMRI and bdfMRI designs. MP12/24 pipelines were detrimental for a task with both longer block length (30 ± 5 s) and higher correlations between head MPs and design matrix. In summary, current results suggest that there does not appear to be a single denoising approach that is appropriate for all fMRI designs. However, even nonaggressive blind-source denoising approaches appear to remove signal as well as noise from task-related data at individual subject and group levels.


Asunto(s)
Artefactos , Encéfalo/fisiología , Neuroimagen Funcional/métodos , Movimientos de la Cabeza , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Neuroimagen Funcional/normas , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/normas , Masculino , Reconocimiento Visual de Modelos/fisiología , Desempeño Psicomotor/fisiología , Proyectos de Investigación , Adulto Joven
11.
Hum Brain Mapp ; 40(18): 5370-5381, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31456319

RESUMEN

Although much attention has been generated in popular media regarding the deleterious effects of pediatric mild traumatic brain injury (pmTBI), a paucity of empirical evidence exists regarding the natural course of biological recovery. Fifty pmTBI patients (12-18 years old) were consecutively recruited from Emergency Departments and seen approximately 1 week and 4 months post-injury in this prospective cohort study. Data from 53 sex- and age-matched healthy controls (HC) were also collected. Functional magnetic resonance imaging was obtained during proactive response inhibition and at rest, in conjunction with independent measures of resting cerebral blood flow. High temporal resolution imaging enabled separate modeling of neural responses for preparation and execution of proactive response inhibition. A priori predictions of failed inhibitory responses (i.e., hyperactivation) were observed in motor circuitry (pmTBI>HC) and sensory areas sub-acutely and at 4 months post-injury. Paradoxically, pmTBI demonstrated hypoactivation (HC>pmTBI) during target processing, along with decreased activation within prefrontal cognitive control areas. Functional connectivity within motor circuitry at rest suggested that deficits were limited to engagement during the inhibitory task, whereas normal resting cerebral perfusion ruled out deficits in basal perfusion. In conclusion, current results suggest blood oxygen-level dependent deficits during inhibitory control may exceed commonly held beliefs about physiological recovery following pmTBI, potentially lasting up to 4 months post-injury.


Asunto(s)
Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/psicología , Circulación Cerebrovascular/fisiología , Inhibición Proactiva , Desempeño Psicomotor/fisiología , Adolescente , Conmoción Encefálica/fisiopatología , Niño , Femenino , Humanos , Masculino , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiopatología
12.
Hum Brain Mapp ; 40(3): 955-966, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30407681

RESUMEN

The role of ventral versus dorsolateral prefrontal regions in instantiating proactive and reactive cognitive control remains actively debated, with few studies parsing cue versus probe-related activity. Rapid sampling (460 ms), long cue-probe delays, and advanced analytic techniques (deconvolution) were therefore used to quantify the magnitude and variability of neural responses during the AX Continuous Performance Test (AX-CPT; N = 46) in humans. Behavioral results indicated slower reaction times during reactive cognitive control (AY trials) in conjunction with decreased accuracy and increased variability for proactive cognitive control (BX trials). The anterior insula/ventrolateral prefrontal cortex (aI/VLPFC) was commonly activated across comparisons of both proactive and reactive cognitive control. In contrast, activity within the dorsomedial and dorsolateral prefrontal cortex was limited to reactive cognitive control. The instantiation of proactive cognitive control during the probe period was also associated with sparse neural activation relative to baseline, potentially as a result of the high degree of neural and behavioral variability observed across individuals. Specifically, the variability of the hemodynamic response function (HRF) within motor circuitry increased after the presentation of B relative to A cues (i.e., late in HRF) and persisted throughout the B probe period. Finally, increased activation of right aI/VLPFC during the cue period was associated with decreased motor circuit activity during BX probes, suggesting a possible role for the aI/VLPFC in proactive suppression of neural responses. Considered collectively, current results highlight the flexible role of the VLPFC in implementing cognitive control during the AX-CPT task but suggest large individual differences in proactive cognitive control strategies.


Asunto(s)
Cognición/fisiología , Corteza Prefrontal/fisiología , Tiempo de Reacción/fisiología , Adulto , Imagen Eco-Planar/métodos , Femenino , Humanos , Masculino
13.
Hum Brain Mapp ; 39(7): 2987-2996, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29656437

RESUMEN

Openness/Intellect (i.e., openness to experience) is the Big Five personality factor most consistently associated with individual differences in creativity. Recent psychometric evidence has demonstrated that this factor consists of two distinct aspects-Intellect and Openness. Whereas Intellect reflects perceived intelligence and intellectual engagement, Openness reflects engagement with fantasy, perception, and aesthetics. We investigated the extent to which Openness and Intellect are associated with variations in brain structure as measured by cortical thickness, area, and volume (N = 185). Our results demonstrated that Openness was correlated inversely with cortical thickness and volume in left middle frontal gyrus (BA 6), middle temporal gyrus (MTG, BA 21), and superior temporal gyrus (BA 41), and exclusively with cortical thickness in left inferior parietal lobule (BA 40), right inferior frontal gyrus (IFG, BA 45), and MTG (BA 37). When age and sex were statistically controlled for, the inverse correlations between Openness and cortical thickness remained statistically significant for all regions except left MTG, whereas the correlations involving cortical volume remained statistically significant only for left middle frontal gyrus. There was no statistically significant correlation between Openness and cortical area, and no statistically significant correlation between Intellect and cortical thickness, area, or volume. Our results demonstrate that individual differences in Openness are correlated with variation in brain structure-particularly as indexed by cortical thickness. Given the involvement of the above regions in processes related to memory and cognitive control, we discuss the implications of our findings for the possible contribution of personality to creative cognition.


Asunto(s)
Corteza Cerebral/anatomía & histología , Creatividad , Inteligencia/fisiología , Neuroimagen/métodos , Personalidad/fisiología , Adolescente , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
14.
Hum Brain Mapp ; 37(11): 4006-4016, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27329671

RESUMEN

While there are minimal sex differences in overall intelligence, males, on average, have larger total brain volume and corresponding regional brain volumes compared to females, measures that are consistently related to intelligence. Limited research has examined which other brain characteristics may differentially contribute to intelligence in females to facilitate equal performance on intelligence measures. Recent reports of sex differences in the neural characteristics of the brain further highlight the need to differentiate how the structural neural characteristics relate to intellectual ability in males and females. The current study utilized a graph network approach in conjunction with structural equation modeling to examine potential sex differences in the relationship between white matter efficiency, fronto-parietal gray matter volume, and general cognitive ability (GCA). Participants were healthy adults (n = 244) who completed a battery of cognitive testing and underwent structural neuroimaging. Results indicated that in males, a latent factor of fronto-parietal gray matter was significantly related to GCA when controlling for total gray matter volume. In females, white matter efficiency and total gray matter volume were significantly related to GCA, with no specificity of the fronto-parietal gray matter factor over and above total gray matter volume. This work highlights that different neural characteristics across males and females may contribute to performance on intelligence measures. Hum Brain Mapp 37:4006-4016, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Lóbulo Frontal/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Inteligencia , Lóbulo Parietal/diagnóstico por imagen , Caracteres Sexuales , Sustancia Blanca/diagnóstico por imagen , Conectoma , Análisis Factorial , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Vías Nerviosas/diagnóstico por imagen , Tamaño de los Órganos , Escalas de Wechsler , Adulto Joven
15.
Neuroimage ; 101: 380-9, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25064665

RESUMEN

Creative cognition emerges from a complex network of interacting brain regions. This study investigated the relationship between the structural organization of the human brain and aspects of creative cognition tapped by divergent thinking tasks. Diffusion weighted imaging (DWI) was used to obtain fiber tracts from 83 segmented cortical regions. This information was represented as a network and metrics of connectivity organization, including connectivity strength, clustering and communication efficiency were computed, and their relationship to individual levels of creativity was examined. Permutation testing identified significant sex differences in the relationship between global connectivity and creativity as measured by divergent thinking tests. Females demonstrated significant inverse relationships between global connectivity and creative cognition, whereas there were no significant relationships observed in males. Node specific analyses revealed inverse relationships across measures of connectivity, efficiency, clustering and creative cognition in widespread regions in females. Our findings suggest that females involve more regions of the brain in processing to produce novel ideas to solutions, perhaps at the expense of efficiency (greater path lengths). Males, in contrast, exhibited few, relatively weak positive relationships across these measures. Extending recent observations of sex differences in connectome structure, our findings of sexually dimorphic relationships suggest a unique topological organization of connectivity underlying the generation of novel ideas in males and females.


Asunto(s)
Creatividad , Imagen de Difusión por Resonancia Magnética/métodos , Red Nerviosa/anatomía & histología , Sustancia Blanca/anatomía & histología , Adulto , Femenino , Humanos , Masculino , Factores Sexuales , Adulto Joven
16.
PLoS One ; 19(2): e0284261, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38300915

RESUMEN

Supratotal resection of primary brain tumors is being advocated especially when involving "non-eloquent" tissue. However, there is extensive neuropsychological data implicating functions critical to higher cognition in areas considered "non-eloquent" by most surgeons. The goal of the study was to determine pre-surgical brain regions that would be predictive of cognitive outcome at 4-6 months post-surgery. Cortical reconstruction and volumetric segmentation were performed with the FreeSurfer-v6.0 image analysis suite. Linear regression models were used to regress cortical volumes from both hemispheres, against the total cognitive z-score to determine the relationship between brain structure and broad cognitive functioning while controlling for age, sex, and total segmented brain volume. We identified 62 consecutive patients who underwent planned awake resections of primary (n = 55, 88%) and metastatic at the University of New Mexico Hospital between 2015 and 2019. Of those, 42 (23 males, 25 left hemispheric lesions) had complete pre and post-op neuropsychological data available and were included in this study. Overall, total neuropsychological functioning was somewhat worse (p = 0.09) at post-operative neuropsychological outcome (Mean = -.20) than at baseline (Mean = .00). Patients with radiation following resection (n = 32) performed marginally worse (p = .036). We found that several discrete brain volumes obtained pre-surgery predicted neuropsychological outcome post-resection. For the total sample, these volumes included: left fusiform, right lateral orbital frontal, right post central, and right paracentral regions. Regardless of lesion lateralization, volumes within the right frontal lobe, and specifically right orbitofrontal cortex, predicted neuropsychological difference scores. The current study highlights the gaps in our current understanding of brain eloquence. We hypothesize that the volume of tissue within the right lateral orbital frontal lobe represents important cognitive reserve capacity in patients undergoing tumor surgery. Our data also cautions the neurosurgeon when considering supratotal resections of tumors that do not extend into areas considered "non-eloquent" by current standards.


Asunto(s)
Neoplasias Encefálicas , Masculino , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Vigilia , Monitoreo Intraoperatorio/métodos , Encéfalo/patología , Craneotomía/métodos , Mapeo Encefálico/métodos , Pruebas Neuropsicológicas
17.
Front Aging Neurosci ; 13: 711579, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34366830

RESUMEN

Identifying biomarkers that can assess the risk of developing Alzheimer's Disease (AD) remains a significant challenge. In this study, we investigated the integrity levels of brain white matter in 34 patients with mild cognitive impairment (MCI) who later converted to AD and 53 stable MCI patients. We used diffusion tensor imaging (DTI) and automated fiber quantification to obtain the diffusion properties of 20 major white matter tracts. To identify which tracts and diffusion measures are most relevant to AD conversion, we used support vector machines (SVMs) to classify the AD conversion and non-conversion MCI patients based on the diffusion properties of each tract individually. We found that diffusivity measures from seven white matter tracts were predictive of AD conversion with axial diffusivity being the most predictive diffusion measure. Additional analyses revealed that white matter changes in the central and parahippocampal terminal regions of the right cingulate hippocampal bundle, central regions of the right inferior frontal occipital fasciculus, and posterior and anterior regions of the left inferior longitudinal fasciculus were the best predictors of conversion from MCI to AD. An SVM based on these white matter tract regions achieved an accuracy of 0.75. These findings provide additional potential biomarkers of AD risk in MCI patients.

18.
Brain Commun ; 2(2): fcaa084, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32954333

RESUMEN

Primary brain tumours often occur near eloquent regions, affecting language, motor and memory capacity, with awake mapping and tailored resection designed to preserve higher cognitive functioning. The effects of such tumours on subcortical structures, including the thalamus and basal ganglia, have been largely unexplored, in spite of the known importance of such structures to higher cognitive functioning. We sought to explore the effects of volume changes of subcortical structures on cognition, in 62 consecutive patients diagnosed with primary brain tumour and cavernous malformations, referred to our neurosurgical practice. We found right caudate to be highly predictive of intelligence, left pallidum of total neuropsychological function and right hippocampus of mood. Our study is the largest of its kind in exploring subcortical substrates of higher cognition in consecutive patients with brain tumours. This research supports prior literature, showing subcortical structures to be related to higher cognitive functioning, particularly measures of memory and executive functioning implicated in fronto-subcortical circuits. Furthermore, involvement of right mesial temporal structures in mood, further strengthens the central role of Papez circuit in emotional quality of cognition. Attention to subcortical integrity is likely to be important in discussing postsurgical cognitive outcome with patients and their families.

19.
J Cereb Blood Flow Metab ; 40(12): 2491-2504, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31903838

RESUMEN

Much attention has been paid to the effects of mild traumatic brain injury (mTBI) on cerebrovascular reactivity in adult populations, yet it remains understudied in pediatric injury. In this study, 30 adolescents (12-18 years old) with pediatric mTBI (pmTBI) and 35 age- and sex-matched healthy controls (HC) underwent clinical and neuroimaging assessments during sub-acute (6.9 ± 2.2 days) and early chronic (120.4 ± 11.7 days) phases of injury. Relative to controls, pmTBI reported greater initial post-concussion symptoms, headache, pain, and anxiety, resolving by four months post-injury. Patients reported increased sleep issues and exhibited deficits in processing speed and attention across both visits. In grey-white matter interface areas throughout the brain, pmTBI displayed increased maximal fit/amplitude of a time-shifted end-tidal CO2 regressor to blood oxygen-level dependent response relative to HC, as well as increased latency to maximal fit. The alterations persisted through the early chronic phase of injury, with maximal fit being associated with complaints of ongoing sleep disturbances during post hoc analyses but not cognitive measures of processing speed or attention. Collectively, these findings suggest that deficits in the speed and degree of cerebrovascular reactivity may persist longer than current conceptualizations about clinical recovery within 30 days.


Asunto(s)
Conmoción Encefálica/fisiopatología , Dióxido de Carbono/metabolismo , Hipercapnia/sangre , Neuroimagen/métodos , Adolescente , Ansiedad/epidemiología , Conmoción Encefálica/complicaciones , Conmoción Encefálica/metabolismo , Dióxido de Carbono/sangre , Estudios de Casos y Controles , Circulación Cerebrovascular/fisiología , Niño , Femenino , Sustancia Gris/irrigación sanguínea , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/metabolismo , Cefalea/epidemiología , Humanos , Hipercapnia/complicaciones , Hipercapnia/fisiopatología , Masculino , Dolor/epidemiología , Síndrome Posconmocional/diagnóstico , Síndrome Posconmocional/epidemiología , Estudios Prospectivos , Trastornos del Sueño-Vigilia/epidemiología , Sustancia Blanca/irrigación sanguínea , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/metabolismo
20.
J Neurotrauma ; 37(13): 1504-1511, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31964232

RESUMEN

Pediatric mild traumatic brain injury (pmTBI) has received increased public scrutiny over the past decade, especially regarding children who experience persistent post-concussive symptoms (PPCS). However, several methods for defining PPCS exist in clinical and scientific literature, and even healthy children frequently exhibit non-specific, concussive-like symptoms. Inter-method agreement (six PPCS methods), observed misclassification rates, and other psychometric properties were examined in large cohorts of consecutively recruited adolescent patients with pmTBI (n = 162) 1 week and 4 months post-injury and in age/sex-matched healthy controls (HC; n = 117) at equivalent time intervals. Six published PPCS methods were stratified into Simple Change (e.g., International Statistical Classification of Diseases and Related Health Problems, 10th revision [ICD-10]) and Standardized Change (e.g., reliable change indices) algorithms. Among HC, test-retest reliability was fair to good across the 4-month assessment window, with evidence of bias (i.e., higher symptom ratings) during retrospective relative to other assessments. Misclassification rates among HC were higher (>30%) for Simple Change algorithms, with poor inter-rater reliability of symptom burden across HC and their parents. A 49% spread existed in terms of the proportion of pmTBI patients "diagnosed" with PPCS at 4 months, with superior inter-method agreement among standardized change algorithms. In conclusion, the self-reporting of symptom burden is only modestly reliable in typically developing adolescents over a 4-month period, with additional evidence for systematic bias in both adolescent and parental ratings. Significant variation existed for identifying pmTBI patients who had "recovered" (i.e., those who did not meet individual criteria for PPCS) from concussion across the six definitions, representing a considerable challenge for estimating the true incidence rate of PPCS in published literature. Although relatively straightforward to obtain, current findings question the utility of the most commonly used Simple Change scores for diagnosis of PPCS in clinical settings.


Asunto(s)
Conmoción Encefálica/clasificación , Conmoción Encefálica/diagnóstico , Pruebas Neuropsicológicas/normas , Síndrome Posconmocional/clasificación , Síndrome Posconmocional/diagnóstico , Adolescente , Factores de Edad , Conmoción Encefálica/psicología , Niño , Femenino , Estudios de Seguimiento , Humanos , Masculino , Variaciones Dependientes del Observador , Síndrome Posconmocional/psicología , Estudios Retrospectivos , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA