Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Inorg Chem ; 63(29): 13214-13222, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38842049

RESUMEN

To improve our understanding of the interaction mechanism in trivalent lanthanide and actinide complexes, studies with structurally different hard and soft donor ligands are of great interest. For that reason, the coordination chemistry of An(III) and Ln(III) with 2,6-bis(5-(tert-butyl)-1H-pyrazol-3-yl)pyridine (C4-BPP) has been explored. Time-resolved laser fluorescence spectroscopy (TRLFS) studies have revealed the formation of [Cm(C4-BPP)n]3+ (n = 1-3) (log ß1' = 7.2 ± 0.4, log ß2' = 10.1 ± 0.5, and log ß3' = 11.8 ± 0.6) and [Eu(C4-BPP)m]3+ (m = 1-2) (log ß1' = 4.9 ± 0.2 and log ß2' = 8.0 ± 0.4). The absence of the [Eu(C4-BPP)3]3+ complex shows a more favorable complexation of Cm(III) over that of Eu(III). Additionally, complementary NMR measurements have been conducted to examine the M(III)-N bond in Ln(III) and Am(III) C4-BPP complexes. 15N NMR data have revealed notable differences in the chemical shifts of the coordinating nitrogen atoms between the Am(III) and Ln(III) complexes. In the Am(III) complex, the coordinating nitrogen atoms have shown a shift by 260 ppm, indicating a higher fraction of covalent bonding in the Am(III)-N bond compared with the Ln(III)-N bond. This observation aligns excellently with the differences in the stability constants obtained from TRLFS studies.

2.
Inorg Chem ; 61(46): 18400-18411, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36331210

RESUMEN

The challenging issue of spent nuclear fuel (SNF) management is being tackled by developing advanced technologies that point to reduce environmental footprint, long-term radiotoxicity, volumes and residual heat of the final waste, and to increase the proliferation resistance. The advanced recycling strategy provides several promising processes for a safer reprocessing of SNF. Advanced hydrometallurgical processes can extract minor actinides directly from Plutonium and Uranium Reduction Extraction raffinate by using selective hydrophilic and lipophilic ligands. This research is focused on a recently developed N-heterocyclic selective lipophilic ligand for actinides separation to be exploited in advanced Selective ActiNide EXtraction (SANEX)-like processes: 2,6-bis(1-(2-ethylhexyl)-1H-1,2,3-triazol-4-yl)pyridine (PyTri-Ethyl-Hexyl-PTEH). The formation and stability of metal-ligand complexes have been investigated by different techniques. Preliminary studies carried out by electrospray ionization mass spectrometry (ESI-MS) analysis enabled to qualitatively explore the PTEH complexes with La(III) and Eu(III) ions as representatives of lanthanides. Time-resolved laser fluorescence spectroscopy (TRLFS) experiments have been carried out to determine the ligand stability constants with Cm(III) and Eu(III) and to better investigate the ligand complexes involved in the extraction process. The contribution of a 1:3 M/L complex, barely identified by ESI-MS analyses, was confirmed as the dominant species by TRLFS experiments. To shed light on ligand selectivity toward actinides over lanthanides, NMR investigations have been performed on PTEH complexes with Lu(III) and Am(III) ions, thereby showing significant differences in chemical shifts of the coordinating nitrogen atoms providing proof of a different bond nature between actinides and lanthanides. These scientific achievements encourage consideration of this PyTri ligand for a potential large-scale implementation.

3.
Inorg Chem ; 61(44): 17719-17729, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36274232

RESUMEN

Novel hydrophilic ligands to selectively separate Am(III) are synthesized: 3,3'-([2,2'-bipyridine]-6,6'-diylbis(1H-1,2,3-triazole-4,1-diyl))bis(propan-1-ol) (PrOH-BPTD) and 3,3'-([2,2'-bipyridine]-6,6'-diylbis(1H-1,2,3-triazole-4,1-diyl))bis(ethan-1-ol) (EtOH-BPTD). The complexation of An(III) and Ln(III) with PrOH- and EtOH-BPTD is studied by time-resolved laser fluorescence spectroscopy. [ML2]3+ is found for both Cm(III) and Eu(III), while [ML]3+ is only formed with Cm(III). Stability constants show a preferential coordination of Cm(III) over Eu(III) with PrOH-BPTD being the stronger ligand. The distribution of Am(III), Cm(III), and Ln(III) between an organic phase containing the extracting agent N,N,N',N'-tetra-n-octyl-3-oxapentanediamide (TODGA) and aqueous phases containing PrOH-BPTD is studied as a function of time and temperature as well as the TODGA, BPTD, and HNO3 concentrations. A system composed of 0.2 mol/L TODGA and 0.04 mol/L PrOH-BPTD in 0.33-0.39 mol/L HNO3 allows for selective Am(III) back-extraction into the aqueous phase while keeping Cm(III) and Ln(III) in the organic phase, marking PrOH-BPTD as an excellent complexant for an optimized AmSel process (Am(III) selective extraction).

4.
Chemistry ; 26(2): 428-437, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31489718

RESUMEN

The synthesis and evaluation of three novel bis-1,2,4-triazine ligands containing five-membered aliphatic rings are reported. Compared to the more hydrophobic ligands 1-3 containing six-membered aliphatic rings, the distribution ratios for relevant f-block metal ions were approximately one order of magnitude lower in each case. Ligand 10 showed an efficient, selective and rapid separation of AmIII and CmIII from nitric acid. The speciation of the ligands with trivalent f-block metal ions was probed using NMR titrations and competition experiments, time-resolved laser fluorescence spectroscopy and X-ray crystallography. While the tetradentate ligands 8 and 10 formed LnIII complexes of the same stoichiometry as their more hydrophobic analogues 2 and 3, significant differences in speciation were observed between the two classes of ligand, with a lower percentage of the extracted 1:2 complexes being formed for ligands 8 and 10. The structures of the solid state 1:1 and 1:2 complexes formed by 8 and 10 with YIII , LuIII and PrIII are very similar to those formed by 2 and 3 with LnIII . Ligand 10 forms CmIII and EuIII 1:2 complexes that are thermodynamically less stable than those formed by ligand 3, suggesting that less hydrophobic ligands form less stable AnIII complexes. Thus, it has been shown for the first time how tuning the cyclic aliphatic part of these ligands leads to subtle changes in their metal ion speciation, complex stability and metal extraction affinity.

5.
Inorg Chem ; 59(17): 12410-12421, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32794734

RESUMEN

Trivalent actinides generally exhibit ninefold coordination in solution. 2,6-Bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine (nPr-BTP), a tridentate nitrogen donor ligand, is known to form ninefold coordinated 1:3 complexes, [An(nPr-BTP)3]3+ (An = U, Pu, Am, Cm) in solution. We report a Cm(III) complex with tenfold coordination in solution, [Cm(nPr-BTP)3(NO3)]2+. This species was identified using time-resolved laser fluorescence spectroscopy (TRLFS), vibronic side band spectroscopy (VSBS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT). Adding nitrate to a solution of the [Cm(nPr-BTP)3]3+ complex in 2-propanol shifts the Cm(III) emission band from 613.1 to 617.3 nm. This bathochromic shift is due to a higher coordination number of the Cm(III) ion in solution, in agreement with the formation of the [Cm(nPr-BTP)3(NO3)]2+ complex. The formation of this complex exhibits slow kinetics in the range of 5 to 12 days, depending on the water content of the solvent. Formation of a complex [Cm(nPr-BTP)3(X)]2+ was not observed for anions other than nitrate (X- = NO2-, CN-, or OTf-). The formation of the [Cm(nPr-BTP)3(NO3)]2+ complex was studied as a function of NO3- and nPr-BTP concentrations, and slope analyses confirmed the addition of one nitrate anion to the [Cm(nPr-BTP)3]3+ complex. Experiments with varied nPr-BTP concentration show that [Cm(nPr-BTP)3(NO3)]2+ only forms at nPr-BTP concentrations below 10-4 mol/L whereas for concentrations greater than 10-4 mol/L the formation of the tenfold species is suppressed and [Cm(nPr-BTP)3]3+ is the only species present. The presence of the tenfold coordinated complex is supported by VSBS, XPS, and DFT calculations. The vibronic side band of the [Cm(nPr-BTP)3(NO3)]2+ complex exhibits a nitrate stretching mode not observed in the [Cm(nPr-BTP)3]3+ complex. Moreover, XPS on [M(nPr-BTP)3(NO3)](NO3)2 (M = Eu, Am) yields signals from both non-coordinated and coordinated nitrate. Finally, DFT calculations reveal that the energetically most favored structure is obtained if the nitrate is positioned on the C2 axis of the D3 symmetrical [Cm(nPr-BTP)3]3+ complex with a bond distance of 413 pm. Combining results from TRLFS, VSBS, XPS, and DFT provides sound evidence for a unique tenfold coordinated Cm(III) complex in solution-a novelty in An(III) solution chemistry.

6.
Inorg Chem ; 58(21): 14642-14651, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31609595

RESUMEN

The "CHON" compatible water-soluble ligand 3,3'-(pyridine-2,6-diylbis(1H-1,2,3-triazole-4,1-diyl))bis(propan-1-ol) (PTD) has shown promise for selectively stripping actinide ions from an organic phase containing both actinide and lanthanide ions, by preferential complexation of the former. Aiming at improving its complexation properties, PTD-OMe was synthesized, bearing a methoxy group on the central pyridine ring, thus increasing its basicity and hence complexation strength. Unfortunately, solvent extraction experiments in the range of 0.1-1 mol/L nitric acid proved PTD-OMe to be less efficient than PTD. This behavior is explained by its greater pKa value (pKa = 2.54) compared to PTD (pKa = 2.1). This counteracts its improved complexation properties for Cm(III) (log ß3(PTD-OMe) = 10.8 ± 0.4 versus log ß3(PTD) = 9.9 ± 0.5).

7.
Dalton Trans ; 51(20): 8028-8035, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35551570

RESUMEN

In this work, we report a combined NMR spectroscopic and time-resolved laser fluorescence spectroscopic (TRLFS) study of the complexation of N,N,N',N'-tetraethyl-2,6-carboxamidopyridine (Et-Pic) with Ln(III) (La, Sm, Eu, and Lu), Y(III) and An(III) (Am and Cm). The focal point of this study was the metal-ligand interaction in the [M(Et-Pic)3]3+ (M = An and Ln) complexes. The NMR analyses found slight differences between the An(III)-N and Ln(III)-N interactions in contrast to the similar properties of the Am(III)-O and Ln(III)-O interactions. These results were supported by TRLFS which shows that the 1 : 3 Cm(III) complex is by one order of magnitude more stable than the respective Eu(III) complex. Thus, the ligand's selectivity lies in between those of pure N- and O-donor ligands. The selectivity results from a small partial covalent bonding between the An(III) ions and Et-Pic.

8.
Dalton Trans ; 47(32): 10906-10914, 2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30043815

RESUMEN

N,N'-Dimethyl,N,N'-dioctylhexylethoxymalonamide (DMDOHEMA) is used to separate An(iii) and Ln(iii) from fission products in several liquid-liquid extraction processes that aim at recycling actinides. The stoichiometry of the extracted complexes is important for a complete understanding of the processes. The presented work focuses on the complexation of Cm(iii) with DMDOHEMA studied by TRLFS in mono- and biphasic (solvent extraction) systems. The formation of [Cm(DMDOHEMA)n]3+ (n = 1-3) in 1-octanol containing 1.7 mol L-1 of water with log ß'1 = 2.6 ± 0.3, log ß'2 = 4.0 ± 0.5, log ß'3 = 4.3 ± 0.5 was confirmed. In addition, fluorescence lifetime measurements indicated the formation of a 1 : 4 complex. Furthermore, solvent extraction experiments were performed, varying the proton and nitrate concentrations. TRLFS measurements of organic phases confirmed the existence of two species, [Cm(DMDOHEMA)3(NO3)(H2O)1-2]2+ (dominant at high proton and nitrate concentrations) and [Cm(DMDOHEMA)4(H2O)]3+ (dominant at low proton and nitrate concentrations). To support the proposed stoichiometries, vibronic side-band spectroscopy (VSBS) was employed, allowing the observation of vibrations of functional groups coordinated to the probed metal ion. Clear differences between the vibronic side bands of the 1 : 3 and 1 : 4 complex in the range of 900-1300 cm-1 were observed. Vibrational spectra calculated by DFT complimented the experimental data and confirmed the proposed stoichiometries. They revealed a monodentate coordination mode of the nitrate and two water molecules in the 1 : 3 complex.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA