Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 569
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(14): 3013-3032.e22, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37352855

RESUMEN

Mitochondrial DNA (mtDNA) is a potent agonist of the innate immune system; however, the exact immunostimulatory features of mtDNA and the kinetics of detection by cytosolic nucleic acid sensors remain poorly defined. Here, we show that mitochondrial genome instability promotes Z-form DNA accumulation. Z-DNA binding protein 1 (ZBP1) stabilizes Z-form mtDNA and nucleates a cytosolic complex containing cGAS, RIPK1, and RIPK3 to sustain STAT1 phosphorylation and type I interferon (IFN-I) signaling. Elevated Z-form mtDNA, ZBP1 expression, and IFN-I signaling are observed in cardiomyocytes after exposure to Doxorubicin, a first-line chemotherapeutic agent that induces frequent cardiotoxicity in cancer patients. Strikingly, mice lacking ZBP1 or IFN-I signaling are protected from Doxorubicin-induced cardiotoxicity. Our findings reveal ZBP1 as a cooperative partner for cGAS that sustains IFN-I responses to mitochondrial genome instability and highlight ZBP1 as a potential target in heart failure and other disorders where mtDNA stress contributes to interferon-related pathology.


Asunto(s)
Cardiotoxicidad , ADN Mitocondrial , Animales , Ratones , ADN Mitocondrial/metabolismo , Inmunidad Innata , Interferones/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Fosforilación
2.
Cell ; 185(17): 3214-3231.e23, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35907404

RESUMEN

Although mutations in mitochondrial-associated genes are linked to inflammation and susceptibility to infection, their mechanistic contributions to immune outcomes remain ill-defined. We discovered that the disease-associated gain-of-function allele Lrrk2G2019S (leucine-rich repeat kinase 2) perturbs mitochondrial homeostasis and reprograms cell death pathways in macrophages. When the inflammasome is activated in Lrrk2G2019S macrophages, elevated mitochondrial ROS (mtROS) directs association of the pore-forming protein gasdermin D (GSDMD) to mitochondrial membranes. Mitochondrial GSDMD pore formation then releases mtROS, promoting a switch to RIPK1/RIPK3/MLKL-dependent necroptosis. Consistent with enhanced necroptosis, infection of Lrrk2G2019S mice with Mycobacterium tuberculosis elicits hyperinflammation and severe immunopathology. Our findings suggest a pivotal role for GSDMD as an executer of multiple cell death pathways and demonstrate that mitochondrial dysfunction can direct immune outcomes via cell death modality switching. This work provides insights into how LRRK2 mutations manifest or exacerbate human diseases and identifies GSDMD-dependent necroptosis as a potential target to limit Lrrk2G2019S-mediated immunopathology.


Asunto(s)
Mitocondrias , Necroptosis , Proteínas de Unión a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animales , Humanos , Inflamasomas , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Macrófagos , Ratones , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Cell ; 159(7): 1563-77, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25525875

RESUMEN

The mechanism by which cells undergo death determines whether dying cells trigger inflammatory responses or remain immunologically silent. Mitochondria play a central role in the induction of cell death, as well as in immune signaling pathways. Here, we identify a mechanism by which mitochondria and downstream proapoptotic caspases regulate the activation of antiviral immunity. In the absence of active caspases, mitochondrial outer membrane permeabilization by Bax and Bak results in the expression of type I interferons (IFNs). This induction is mediated by mitochondrial DNA-dependent activation of the cGAS/STING pathway and results in the establishment of a potent state of viral resistance. Our results show that mitochondria have the capacity to simultaneously expose a cell-intrinsic inducer of the IFN response and to inactivate this response in a caspase-dependent manner. This mechanism provides a dual control, which determines whether mitochondria initiate an immunologically silent or a proinflammatory type of cell death.


Asunto(s)
Apoptosis , Caspasas/metabolismo , Interferón Tipo I/metabolismo , Transducción de Señal , Animales , ADN Mitocondrial/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Interferón Tipo I/inmunología , Ratones , Ratones Noqueados , Virosis/inmunología
4.
Nature ; 595(7867): 394-398, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34262211

RESUMEN

The evolution of the global carbon and silicon cycles is thought to have contributed to the long-term stability of Earth's climate1-3. Many questions remain, however, regarding the feedback mechanisms at play, and there are limited quantitative constraints on the sources and sinks of these elements in Earth's surface environments4-12. Here we argue that the lithium-isotope record can be used to track the processes controlling the long-term carbon and silicon cycles. By analysing more than 600 shallow-water marine carbonate samples from more than 100 stratigraphic units, we construct a new carbonate-based lithium-isotope record spanning the past 3 billion years. The data suggest an increase in the carbonate lithium-isotope values over time, which we propose was driven by long-term changes in the lithium-isotopic conditions of sea water, rather than by changes in the sedimentary alterations of older samples. Using a mass-balance modelling approach, we propose that the observed trend in lithium-isotope values reflects a transition from Precambrian carbon and silicon cycles to those characteristic of the modern. We speculate that this transition was linked to a gradual shift to a biologically controlled marine silicon cycle and the evolutionary radiation of land plants13,14.


Asunto(s)
Ciclo del Carbono , Carbono , Isótopos , Litio , Silicio , Organismos Acuáticos , Carbono/análisis , Carbono/metabolismo , Sedimentos Geológicos/química , Isótopos/análisis , Litio/análisis , Plantas , Agua de Mar/química , Silicio/análisis , Silicio/metabolismo
5.
Hum Mol Genet ; 33(R1): R80-R91, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38779772

RESUMEN

Mitochondria are pleiotropic organelles central to an array of cellular pathways including metabolism, signal transduction, and programmed cell death. Mitochondria are also key drivers of mammalian immune responses, functioning as scaffolds for innate immune signaling, governing metabolic switches required for immune cell activation, and releasing agonists that promote inflammation. Mitochondrial DNA (mtDNA) is a potent immunostimulatory agonist, triggering pro-inflammatory and type I interferon responses in a host of mammalian cell types. Here we review recent advances in how mtDNA is detected by nucleic acid sensors of the innate immune system upon release into the cytoplasm and extracellular space. We also discuss how the interplay between mtDNA release and sensing impacts cellular innate immune endpoints relevant to health and disease.


Asunto(s)
ADN Mitocondrial , Inmunidad Innata , Mitocondrias , Transducción de Señal , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/inmunología , Mitocondrias/metabolismo , Mitocondrias/inmunología , Mitocondrias/genética , Animales , Transducción de Señal/inmunología , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Interferón Tipo I/genética , Inflamación/inmunología , Inflamación/genética
6.
Nature ; 587(7835): 673-677, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32911481

RESUMEN

Nucleic acids derived from pathogens induce potent innate immune responses1-6. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor that catalyses the synthesis of the cyclic dinucleotide cyclic GMP-AMP, which mediates the induction of type I interferons through the STING-TBK1-IRF3 signalling axis7-11. cGAS was previously thought to not react with self DNA owing to its cytosolic localization2,12,13; however, recent studies have shown that cGAS is localized mostly in the nucleus and has low activity as a result of tight nuclear tethering14-18. Here we show that cGAS binds to nucleosomes with nanomolar affinity and that nucleosome binding potently inhibits its catalytic activity. To elucidate the molecular basis of cGAS inactivation by nuclear tethering, we determined the structure of mouse cGAS bound to human nucleosome by cryo-electron microscopy. The structure shows that cGAS binds to a negatively charged acidic patch formed by histones H2A and H2B via its second DNA-binding site19. High-affinity nucleosome binding blocks double-stranded DNA binding and maintains cGAS in an inactive conformation. Mutations of cGAS that disrupt nucleosome binding alter cGAS-mediated signalling in cells.


Asunto(s)
Nucleosomas/química , Nucleosomas/metabolismo , Nucleotidiltransferasas/antagonistas & inhibidores , Nucleotidiltransferasas/química , Animales , Biocatálisis , Dominio Catalítico , Línea Celular , Microscopía por Crioelectrón , ADN/química , ADN/genética , ADN/metabolismo , ADN/ultraestructura , Humanos , Ratones , Modelos Moleculares , Mutación , Nucleosomas/ultraestructura , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/ultraestructura , Unión Proteica , Transducción de Señal
7.
Proc Natl Acad Sci U S A ; 120(39): e2306343120, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37725648

RESUMEN

The oxidation of organic carbon contained within sedimentary rocks ("petrogenic" carbon, or hereafter OCpetro) emits nearly as much CO2 as is released by volcanism, thereby playing a key role in the long-term global C budget. High erosion rates in mountains have been shown to increase OCpetro oxidation. However, these settings also export unweathered material that may continue to react in downstream floodplains. The relative importance of OCpetro oxidation in mountains versus floodplains remains difficult to assess as disparate methods have been used in the different environments. Here, we investigate the sources and fluxes of rhenium (Re) in the Rio Madre de Dios to quantify OCpetro oxidation from the Andes to the Amazon floodplain using a common approach. Dissolved rhenium concentrations (n = 131) range from 0.01 to 63 pmol L-1 and vary depending on lithology and geomorphic setting. We find that >75% of the dissolved Re derives from OCpetro oxidation and that this proportion increases downstream. We estimate that in the Andes, OCpetro oxidation releases 11.2+4.5/-2.8 tC km-2 y-1 of CO2, which corresponds to ~41% of the total OCpetro denudation (sum of oxidized and solid OCpetro). A Re mass balance across the Rio Madre de Dios shows that 46% of OCpetro oxidation takes place in the Andes, 14% in the foreland-lowlands, and 40% in the Andean-fed floodplains. This doubling of OCpetro oxidation flux downstream of the Andes demonstrates that, when present, floodplains can greatly increase OCpetro oxidation and CO2 release.

8.
J Immunol ; 210(8): 1123-1133, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36881877

RESUMEN

NF-κB-inducing kinase (NIK), which is essential for the activation of the noncanonical NF-κB pathway, regulates diverse processes in immunity, development, and disease. Although recent studies have elucidated important functions of NIK in adaptive immune cells and cancer cell metabolism, the role of NIK in metabolic-driven inflammatory responses in innate immune cells remains unclear. In this study, we demonstrate that murine NIK-deficient bone marrow-derived macrophages exhibit defects in mitochondrial-dependent metabolism and oxidative phosphorylation, which impair the acquisition of a prorepair, anti-inflammatory phenotype. Subsequently, NIK-deficient mice exhibit skewing of myeloid cells characterized by aberrant eosinophil, monocyte, and macrophage cell populations in the blood, bone marrow, and adipose tissue. Furthermore, NIK-deficient blood monocytes display hyperresponsiveness to bacterial LPS and elevated TNF-α production ex vivo. These findings suggest that NIK governs metabolic rewiring, which is critical for balancing proinflammatory and anti-inflammatory myeloid immune cell function. Overall, our work highlights a previously unrecognized role for NIK as a molecular rheostat that fine-tunes immunometabolism in innate immunity, and suggests that metabolic dysfunction may be an important driver of inflammatory diseases caused by aberrant NIK expression or activity.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Transducción de Señal , Ratones , Animales , Transducción de Señal/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , FN-kappa B/metabolismo , Diferenciación Celular , Inmunidad Innata , Quinasa de Factor Nuclear kappa B
9.
J Immunol ; 210(11): 1761-1770, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37067290

RESUMEN

Borrelia burgdorferi, the etiologic agent of Lyme disease, is a spirochete that modulates numerous host pathways to cause a chronic, multisystem inflammatory disease in humans. B. burgdorferi infection can lead to Lyme carditis, neurologic complications, and arthritis because of the ability of specific borrelial strains to disseminate, invade, and drive inflammation. B. burgdorferi elicits type I IFN (IFN-I) responses in mammalian cells and tissues that are associated with the development of severe arthritis or other Lyme-related complications. However, the innate immune sensors and signaling pathways controlling IFN-I induction remain unclear. In this study, we examined whether intracellular nucleic acid sensing is required for the induction of IFN-I to B. burgdorferi. Using fluorescence microscopy, we show that B. burgdorferi associates with mouse and human cells in culture, and we document that internalized spirochetes colocalize with the pattern recognition receptor cyclic GMP-AMP synthase (cGAS). Moreover, we report that IFN-I responses in mouse macrophages and murine embryonic fibroblasts are significantly attenuated in the absence of cGAS or its adaptor stimulator of IFN genes (STING), which function to sense and respond to intracellular DNA. Longitudinal in vivo tracking of bioluminescent B. burgdorferi revealed similar dissemination kinetics and borrelial load in C57BL/6J wild-type, cGAS-deficient, or STING-deficient mice. However, infection-associated tibiotarsal joint pathology and inflammation were modestly reduced in cGAS-deficient compared with wild-type mice. Collectively, these results indicate that the cGAS-STING pathway is a critical mediator of mammalian IFN-I signaling and innate immune responses to B. burgdorferi.


Asunto(s)
Artritis , Borrelia burgdorferi , Interferón Tipo I , Enfermedad de Lyme , Animales , Humanos , Ratones , Inflamación , Interferón Tipo I/metabolismo , Mamíferos/metabolismo , Ratones Endogámicos C57BL , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo
10.
Nature ; 569(7758): 718-722, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31118511

RESUMEN

Nucleic acids from bacteria or viruses induce potent immune responses in infected cells1-4. The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses5,6. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor7,8. It catalyses the synthesis of cyclic GMP-AMP (cGAMP)9-12, which stimulates the induction of type I interferons through the STING-TBK1-IRF-3 signalling axis13-15. STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase8,16. The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK18,17-20. Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons21. However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFNß after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. These findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders.


Asunto(s)
Secuencias de Aminoácidos , Secuencia Conservada , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Cristalografía por Rayos X , Activación Enzimática , Células HEK293 , Humanos , Interferón beta/metabolismo , Proteínas de la Membrana/genética , Modelos Moleculares , Mutación , Nucleótidos Cíclicos/metabolismo , Unión Proteica , Transducción de Señal
11.
Brain Behav Immun ; 117: 205-214, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38244945

RESUMEN

Although cancer and its therapy are well known to be associated with fatigue, the exact nature of cancer-related fatigue remains ill-defined. We previously reported that fatigue-like behavior induced independently by tumor growth and by the chemotherapeutic agent cisplatin is characterized by reduced voluntary wheel running and an intact motivation to expand effort for food rewards. The present set of experiments was initiated to characterize the functional consequences of fatigue induced by chemoradiotherapy in tumor-bearing mice and relate them to changes in the expression of genes coding for inflammation, mitochondria dynamics and metabolism. Two syngeneic murine models of cancer were selected for this purpose, a model of human papilloma virus-related head and neck cancer and a model of lung cancer. In both models, tumor-bearing mice were submitted to chemoradiotherapy to limit tumor progression. Two dimensions of fatigue were assessed, the physical dimension by changes in physical activity in mice trained to run in wheels and the motivational dimension by changes in the performance of mice trained to nose poke to obtain a food reward in a progressive ratio schedule of food reinforcement. Chemoradiotherapy reliably decreased wheel running activity but had no effect on performance in the progressive ratio in both murine models of cancer. These effects were the same for the two murine models of cancer and did not differ according to sex. Livers and brains were collected at the end of the experiments for qRT-PCR analysis of expression of genes coding for inflammation, mitochondria dynamics, and metabolism. The observed changes were mainly apparent in the liver and typical of activation of type I interferon and NF-κB-dependent signaling, with alterations in mitochondrial dynamics and a shift toward glycolysis. Although the importance of these alterations for the pathophysiology of cancer-related fatigue remains to be explored, the present findings indicate that fatigue brought on by cancer therapy in tumor-bearing mice is more physical than motivational.


Asunto(s)
Neoplasias de Cabeza y Cuello , Actividad Motora , Humanos , Animales , Ratones , Encéfalo/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Motivación , Inflamación/metabolismo
12.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34001595

RESUMEN

Fly ash-the residuum of coal burning-contains a considerable amount of fossilized particulate organic carbon (FOCash) that remains after high-temperature combustion. Fly ash leaks into natural environments and participates in the contemporary carbon cycle, but its reactivity and flux remained poorly understood. We characterized FOCash in the Chang Jiang (Yangtze River) basin, China, and quantified the riverine FOCash fluxes. Using Raman spectral analysis, ramped pyrolysis oxidation, and chemical oxidation, we found that FOCash is highly recalcitrant and unreactive, whereas shale-derived FOC (FOCrock) was much more labile and easily oxidized. By combining mass balance calculations and other estimates of fly ash input to rivers, we estimated that the flux of FOCash carried by the Chang Jiang was 0.21 to 0.42 Mt C⋅y-1 in 2007 to 2008-an amount equivalent to 37 to 72% of the total riverine FOC export. We attributed such high flux to the combination of increasing coal combustion that enhances FOCash production and the massive construction of dams in the basin that reduces the flux of FOCrock eroded from upstream mountainous areas. Using global ash data, a first-order estimate suggests that FOCash makes up to 16% of the present-day global riverine FOC flux to the oceans. This reflects a substantial impact of anthropogenic activities on the fluxes and burial of fossil organic carbon that has been made less reactive than the rocks from which it was derived.


Asunto(s)
Carbono/metabolismo , Ceniza del Carbón/efectos adversos , Carbón Mineral/efectos adversos , Monitoreo del Ambiente , Carbono/química , Ciclo del Carbono , China/epidemiología , Humanos , Minerales/química , Ríos
13.
J Transl Med ; 21(1): 331, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208779

RESUMEN

BACKGROUND: People with mitochondrial disease (MtD) are susceptible to metabolic decompensation and neurological symptom progression in response to an infection. Increasing evidence suggests that mitochondrial dysfunction may cause chronic inflammation, which may promote hyper-responsiveness to pathogens and neurodegeneration. We sought to examine transcriptional changes between MtD patients and healthy controls to identify common gene signatures of immune dysregulation in MtD. METHODS: We collected whole blood from a cohort of MtD patients and healthy controls and performed RNAseq to examine transcriptomic differences. We performed GSEA analyses to compare our findings against existing studies to identify commonly dysregulated pathways. RESULTS: Gene sets involved in inflammatory signaling, including type I interferons, interleukin-1ß and antiviral responses, are enriched in MtD patients compared to controls. Monocyte and dendritic cell gene clusters are also enriched in MtD patients, while T cell and B cell gene sets are negatively enriched. The enrichment of antiviral response corresponds with an independent set of MELAS patients, and two mouse models of mtDNA dysfunction. CONCLUSIONS: Through the convergence of our results, we demonstrate translational evidence of systemic peripheral inflammation arising from MtD, predominantly through antiviral response gene sets. This provides key evidence linking mitochondrial dysfunction to inflammation, which may contribute to the pathogenesis of primary MtD and other chronic inflammatory disorders associated with mitochondrial dysfunction.


Asunto(s)
Interferones , Enfermedades Mitocondriales , Animales , Ratones , Interferones/genética , Transcriptoma/genética , Inflamación/genética , Inflamación/patología , Antivirales
14.
Brain Behav Immun ; 111: 169-176, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37076053

RESUMEN

Cisplatin is a chemotherapeutic agent that is still commonly used to treat solid tumors. However, it has several toxic side effects due in large part to the mitochondrial damage that it induces. As this mitochondrial damage is likely to result in a decrease in the amount of metabolic energy that is available for behavioral activities, it is not surprising that fatigue develops in cancer patients treated with cisplatin. The present preclinical study was initiated to determine whether the detrimental effects of cisplatin were more pronounced on physical effort requiring a lot of energy versus effort that not only requires less energy but also procures energy in the form of food. For this purpose, mice were either trained to run in a wheel or to work for food in various schedules of food reinforcement before being treated with cisplatin. The experiments were carried out only in male mice as we had already reported that sex differences in cisplatin-induced neurotoxicities are minimal. Cisplatin was administered daily for one cycle of five days, or two cycles separated by a five-day rest. As observed in previous experiments, cisplatin drastically reduced voluntary wheel running. In contrast, when cisplatin was administered to food-restricted mice trained to work for a food reward in a progressive ratio schedule or in a fixed-interval schedule, it tended to increase the number of responses emitted to obtain the food rewards. This increase was not associated with any change in the temporal distribution of responses during the interval between two reinforcements in mice submitted to the fixed interval schedule of food reinforcement. When cisplatin was administered to food-restricted mice trained in an effort-based decision-making task in which they had to choose between working for a grain pellet with little effort and working for a preferred chocolate pellet with more effort, it decreased the total number of responses emitted to obtain food rewards. However, this effect was much less marked than the decrease in wheel running induced by cisplatin. The decrease in the effort invested in the procurement of food rewards was not associated with any change in the relative distribution of effort between low reward and high reward during the time course of the test session. These findings show that cisplatin decreases energy-consuming activities but not energy-procuring activities unless they require a choice between options differing in their cost-benefit ratio. Furthermore, they indicate that the physical dimension of fatigue is more likely to develop in cisplatin-treated individuals than the motivational dimension of fatigue.


Asunto(s)
Cisplatino , Actividad Motora , Ratones , Masculino , Femenino , Animales , Cisplatino/farmacología , Actividad Motora/fisiología , Recompensa , Motivación , Fatiga
15.
PLoS Comput Biol ; 18(11): e1010729, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36441792

RESUMEN

Humans have an astonishing ability to extract hidden information from the movement of others. In previous work, subjects observed the motion of a simulated stick-figure, two-link planar arm and estimated its stiffness. Fundamentally, stiffness is the relation between force and displacement. Given that subjects were unable to physically interact with the simulated arm, they were forced to make their estimates solely based on observed kinematic information. Remarkably, subjects were able to correctly correlate their stiffness estimates with changes in the simulated stiffness, despite the lack of force information. We hypothesized that subjects were only able to do this because the controller used to produce the simulated arm's movement, composed of oscillatory motions driving mechanical impedances, resembled the controller humans use to produce their own movement. However, it is still unknown what motion features subjects used to estimate stiffness. Human motion exhibits systematic velocity-curvature patterns, and it has previously been shown that these patterns play an important role in perceiving and interpreting motion. Thus, we hypothesized that manipulating the velocity profile should affect subjects' ability to estimate stiffness. To test this, we changed the velocity profile of the simulated two-link planar arm while keeping the simulated joint paths the same. Even with manipulated velocity signals, subjects were still able to estimate changes in simulated joint stiffness. However, when subjects were shown the same simulated path with different velocity profiles, they perceived motions that followed a veridical velocity profile to be less stiff than that of a non-veridical profile. These results suggest that path information (displacement) predominates over temporal information (velocity) when humans use visual observation to estimate stiffness.


Asunto(s)
Percepción Visual , Humanos
16.
J Immunol ; 206(8): 1890-1900, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33731338

RESUMEN

Caseinolytic mitochondrial matrix peptidase proteolytic subunit (CLPP) is a serine protease that degrades damaged or misfolded mitochondrial proteins. CLPP-null mice exhibit growth retardation, deafness, and sterility, resembling human Perrault syndrome, but also display immune system alterations. However, the molecular mechanisms and signaling pathways underlying immunological changes in CLPP-null mice remain unclear. In this study, we report the steady-state activation of type I IFN signaling and antiviral gene expression in CLPP-deficient cells and tissues, resulting in marked resistance to RNA and DNA virus infection. Depletion of the cyclic GMP-AMP (cGAS)-stimulator of IFN genes (STING) DNA sensing pathway reduces steady-state IFN-I signaling and abrogates the broad antiviral phenotype of CLPP-null cells. Moreover, we report that CLPP deficiency leads to mitochondrial DNA (mtDNA) instability and packaging alterations. Pharmacological and genetic approaches to deplete mtDNA or inhibit cytosolic release markedly reduce antiviral gene expression, implicating mtDNA stress as the driver of IFN-I signaling in CLPP-null mice. Our work places the cGAS-STING-IFN-I innate immune pathway downstream of CLPP and may have implications for understanding Perrault syndrome and other human diseases involving CLPP dysregulation.


Asunto(s)
Interferón beta , Nucleotidiltransferasas , Animales , ADN Mitocondrial/genética , Endopeptidasa Clp/genética , Humanos , Interferón beta/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Nucleótidos Cíclicos , Nucleotidiltransferasas/metabolismo , Péptido Hidrolasas
17.
J Ethn Subst Abuse ; 22(2): 350-371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34339341

RESUMEN

American Indian and Alaska Native (AIAN) communities have higher rates of substance use than other racial and ethnic groups. Substance use disorder (SUD) is tied to the increased risk of experiencing homelessness. National policies have also led to the disproportionate rates of homelessness among AIAN communities. However, specific experiences related to the occurrence of SUD and homelessness among AIAN in California, as well as seeking and accessing SUD treatment, are not well understood. This study explored potential SUD risk and resilience factors for AIANs experiencing homelessness and their experiences when seeking services for SUD. Nineteen interviews were conducted in northern, central, and southern California. Thematic analysis was used for these data. The five primary codes were: (1) risk factors for SUD, (2) resilience related to SUD service seeking, (3) services available, (4) barriers accessing services, and (5) services needed. Based on the results, themes for risk were trauma, mental health, and community conditions. Themes for resilience were identified at individual and community levels and included personal motivation and community support and inclusiveness. Themes for services available were limited knowledge about service types and services' location. The themes for barriers accessing services were identified at internal and external levels, and included lack of readiness and transportation challenges, respectively. Themes for services needed included continuum of care, integrated care, and culturally sensitive services. Findings highlight the importance of addressing the potential risk factors and service needs of AIANs experiencing homelessness to provide comprehensive and culturally sensitive services to reduce substance use.


Asunto(s)
Indio Americano o Nativo de Alaska , Personas con Mala Vivienda , Trastornos Relacionados con Sustancias , Humanos , Indio Americano o Nativo de Alaska/psicología , California , Trastornos Relacionados con Sustancias/epidemiología
18.
J Immunol ; 205(1): 153-167, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32404352

RESUMEN

Tripartite motif-containing proteins (TRIMs) play a variety of recently described roles in innate immunity. Although many TRIMs regulate type I IFN expression following cytosolic nucleic acid sensing of viruses, their contribution to innate immune signaling and gene expression during bacterial infection remains largely unknown. Because Mycobacterium tuberculosis is an activator of cGAS-dependent cytosolic DNA sensing, we set out to investigate a role for TRIM proteins in regulating macrophage responses to M. tuberculosis In this study, we demonstrate that TRIM14, a noncanonical TRIM that lacks an E3 ubiquitin ligase RING domain, is a critical negative regulator of the type I IFN response in Mus musculus macrophages. We show that TRIM14 interacts with both cGAS and TBK1 and that macrophages lacking TRIM14 dramatically hyperinduce IFN stimulated gene (ISG) expression following M. tuberculosis infection, cytosolic nucleic acid transfection, and IFN-ß treatment. Consistent with a defect in resolution of the type I IFN response, Trim14 knockout macrophages have more phospho-Ser754 STAT3 relative to phospho-Ser727 and fail to upregulate the STAT3 target Socs3, which is required to turn off IFNAR signaling. These data support a model whereby TRIM14 acts as a scaffold between TBK1 and STAT3 to promote phosphorylation of STAT3 at Ser727 and resolve ISG expression. Remarkably, Trim14 knockout macrophages hyperinduce expression of antimicrobial genes like Nos2 and are significantly better than control cells at limiting M. tuberculosis replication. Collectively, these data reveal an unappreciated role for TRIM14 in resolving type I IFN responses and controlling M. tuberculosis infection.


Asunto(s)
Interferón Tipo I/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mycobacterium tuberculosis/inmunología , Transducción de Señal/inmunología , Proteínas de Motivos Tripartitos/metabolismo , Tuberculosis/inmunología , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/inmunología , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/aislamiento & purificación , Macrófagos/inmunología , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Óxido Nítrico Sintasa de Tipo II/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/aislamiento & purificación , Nucleotidiltransferasas/metabolismo , Fosforilación/inmunología , Cultivo Primario de Células , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/aislamiento & purificación , Proteínas Serina-Treonina Quinasas/metabolismo , Células RAW 264.7 , Receptor de Interferón alfa y beta/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/aislamiento & purificación , Tuberculosis/microbiología
19.
Neurogenetics ; 22(4): 297-312, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34345994

RESUMEN

Mitochondrial dysfunction may activate innate immunity, e.g. upon abnormal handling of mitochondrial DNA in TFAM mutants or in altered mitophagy. Recent reports showed that also deletion of mitochondrial matrix peptidase ClpP in mice triggers transcriptional upregulation of inflammatory factors. Here, we studied ClpP-null mouse brain at two ages and mouse embryonal fibroblasts, to identify which signaling pathways are responsible, employing mass spectrometry, subcellular fractionation, immunoblots, and reverse transcriptase polymerase chain reaction. Several mitochondrial unfolded protein response factors showed accumulation and altered migration in blue-native gels, prominently the co-chaperone DNAJA3. Its mitochondrial dysregulation increased also its extra-mitochondrial abundance in the nucleus, a relevant observation given that DNAJA3 modulates innate immunity. Similar observations were made for STAT1, a putative DNAJA3 interactor. Elevated expression was observed not only for the transcription factors Stat1/2, but also for two interferon-stimulated genes (Ifi44, Gbp3). Inflammatory responses were strongest for the RLR pattern recognition receptors (Ddx58, Ifih1, Oasl2, Trim25) and several cytosolic nucleic acid sensors (Ifit1, Ifit3, Oas1b, Ifi204, Mnda). The consistent dysregulation of these factors from an early age might influence also human Perrault syndrome, where ClpP loss-of-function leads to early infertility and deafness, with subsequent widespread neurodegeneration.


Asunto(s)
Proteínas del Choque Térmico HSP40/metabolismo , Inmunidad Innata/inmunología , Ácidos Nucleicos/metabolismo , Factor de Transcripción STAT1/metabolismo , Animales , Citosol/inmunología , Citosol/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/inmunología , Proteínas del Choque Térmico HSP40/inmunología , Ratones , Mitocondrias/genética , Mitocondrias/inmunología , Ácidos Nucleicos/inmunología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , Factor de Transcripción STAT1/inmunología , Regulación hacia Arriba
20.
Appl Environ Microbiol ; 87(20): e0133921, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34347514

RESUMEN

Permafrost soils store approximately twice the amount of carbon currently present in Earth's atmosphere and are acutely impacted by climate change due to the polar amplification of increasing global temperature. Many organic-rich permafrost sediments are located on large river floodplains, where river channel migration periodically erodes and redeposits the upper tens of meters of sediment. Channel migration exerts a first-order control on the geographic distribution of permafrost and floodplain stratigraphy and thus may affect microbial habitats. To examine how river channel migration in discontinuous permafrost environments affects microbial community composition, we used amplicon sequencing of the 16S rRNA gene on sediment samples from floodplain cores and exposed riverbanks along the Koyukuk River, a large tributary of the Yukon River in west-central Alaska. Microbial communities are sensitive to permafrost thaw: communities found in deep samples thawed by the river closely resembled near-surface active-layer communities in nonmetric multidimensional scaling analyses but did not resemble floodplain permafrost communities at the same depth. Microbial communities also displayed lower diversity and evenness in permafrost than in both the active layer and permafrost-free point bars recently deposited by river channel migration. Taxonomic assignments based on 16S and quantitative PCR for the methyl coenzyme M reductase functional gene demonstrated that methanogens and methanotrophs are abundant in older permafrost-bearing deposits but not in younger, nonpermafrost point bar deposits. The results suggested that river migration, which regulates the distribution of permafrost, also modulates the distribution of microbes potentially capable of producing and consuming methane on the Koyukuk River floodplain. IMPORTANCE Arctic lowlands contain large quantities of soil organic carbon that is currently sequestered in permafrost. With rising temperatures, permafrost thaw may allow this carbon to be consumed by microbial communities and released to the atmosphere as carbon dioxide or methane. We used gene sequencing to determine the microbial communities present in the floodplain of a river running through discontinuous permafrost. We found that the river's lateral movement across its floodplain influences the occurrence of certain microbial communities-in particular, methane-cycling microbes were present on the older, permafrost-bearing eroding riverbank but absent on the newly deposited river bars. Riverbank sediment had microbial communities more similar to those of the floodplain active-layer samples than permafrost samples from the same depth. Therefore, spatial patterns of river migration influence the distribution of microbial taxa relevant to the warming Arctic climate.


Asunto(s)
Microbiota , Hielos Perennes/microbiología , Ríos/microbiología , Alaska , Ciclo del Carbono , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA