Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Gastroenterology ; 163(6): 1531-1546.e8, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35985511

RESUMEN

BACKGROUND & AIMS: To examine whether quantitative pathologic analysis of digitized hematoxylin and eosin slides of colorectal carcinoma (CRC) correlates with clinicopathologic features, molecular alterations, and prognosis. METHODS: A quantitative segmentation algorithm (QuantCRC) was applied to 6468 digitized hematoxylin and eosin slides of CRCs. Fifteen parameters were recorded from each image and tested for associations with clinicopathologic features and molecular alterations. A prognostic model was developed to predict recurrence-free survival using data from the internal cohort (n = 1928) and validated on an internal test (n = 483) and external cohort (n = 938). RESULTS: There were significant differences in QuantCRC according to stage, histologic subtype, grade, venous/lymphatic/perineural invasion, tumor budding, CD8 immunohistochemistry, mismatch repair status, KRAS mutation, BRAF mutation, and CpG methylation. A prognostic model incorporating stage, mismatch repair, and QuantCRC resulted in a Harrell's concordance (c)-index of 0.714 (95% confidence interval [CI], 0.702-0.724) in the internal test and 0.744 (95% CI, 0.741-0.754) in the external cohort. Removing QuantCRC from the model reduced the c-index to 0.679 (95% CI, 0.673-0.694) in the external cohort. Prognostic risk groups were identified, which provided a hazard ratio of 2.24 (95% CI, 1.33-3.87, P = .004) for low vs high-risk stage III CRCs and 2.36 (95% CI, 1.07-5.20, P = .03) for low vs high-risk stage II CRCs, in the external cohort after adjusting for established risk factors. The predicted median 36-month recurrence rate for high-risk stage III CRCs was 32.7% vs 13.4% for low-risk stage III and 15.8% for high-risk stage II vs 5.4% for low-risk stage II CRCs. CONCLUSIONS: QuantCRC provides a powerful adjunct to routine pathologic reporting of CRC. A prognostic model using QuantCRC improves prediction of recurrence-free survival.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Testiculares , Humanos , Masculino , Neoplasias Colorrectales/genética , Reparación de la Incompatibilidad de ADN , Eosina Amarillenta-(YS) , Hematoxilina
2.
Toxicol Pathol ; 49(4): 897-904, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33576323

RESUMEN

Inflammatory bowel disease (IBD) is a complex disease which leads to life-threatening complications and decreased quality of life. The dextran sulfate sodium (DSS) colitis model in mice is known for rapid screening of candidate compounds. Efficacy assessment in this model relies partly on microscopic semiquantitative scoring, which is time-consuming and subjective. We hypothesized that deep learning artificial intelligence (AI) could be used to identify acute inflammation in H&E-stained sections in a consistent and quantitative manner. Training sets were established using ×20 whole slide images of the entire colon. Supervised training of a Convolutional Neural Network (CNN) was performed using a commercial AI platform to detect the entire colon tissue, the muscle and mucosa layers, and 2 categories within the mucosa (normal and acute inflammation E1). The training sets included slides of naive, vehicle-DSS and cyclosporine A-DSS mice. The trained CNN was able to segment, with a high level of concordance, the different tissue compartments in the 3 groups of mice. The segmented areas were used to determine the ratio of E1-affected mucosa to total mucosa. This proof-of-concept work shows promise to increase efficiency and decrease variability of microscopic scoring of DSS colitis when screening candidate compounds for IBD.


Asunto(s)
Colitis , Aprendizaje Profundo , Animales , Inteligencia Artificial , Colitis/inducido químicamente , Colon , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Calidad de Vida
3.
Toxicol Pathol ; 49(4): 905-911, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33397208

RESUMEN

Many compounds affect the cellularity of hematolymphoid organs including bone marrow. Toxicologic pathologists are tasked with their evaluation as part of safety studies. An artificial intelligence (AI) tool could provide diagnostic support for the pathologist. We looked at the ability of a deep-learning AI model to evaluate whole slide images of macaque sternebrae to identify and enumerate bone marrow hematopoietic cells. The AI model was trained and able to differentiate the hematopoietic cells from the other sternebrae tissues. We compared the model to severity scores in a study with decreased hematopoietic cellularity. The mean cells/mm2 from the model was lower for each increase in severity score. The AI model was trained by 1 pathologist, providing proof of concept that AI model generation can be fast and agile, without the need of a cross disciplinary team and significant effort. We see great potential for the role of AI-based bone marrow screening.


Asunto(s)
Inteligencia Artificial , Médula Ósea , Animales , Células de la Médula Ósea , Humanos , Macaca fascicularis , Patólogos
4.
Toxicol Pathol ; 49(4): 773-783, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33371797

RESUMEN

Digital tissue image analysis is a computational method for analyzing whole-slide images and extracting large, complex, and quantitative data sets. However, as with any analysis method, the quality of generated results is dependent on a well-designed quality control system for the entire digital pathology workflow. Such system requires clear procedural controls, appropriate user training, and involvement of specialists to oversee key steps of the workflow. The toxicologic pathologist is responsible for reporting data obtained by digital image analysis and therefore needs to ensure that it is correct. To accomplish that, they must understand the main parameters of the quality control system and should play an integral part in its conception and implementation. This manuscript describes the most common digital tissue image analysis end points and potential sources of analysis errors. In addition, it outlines recommended approaches for ensuring quality and correctness of results for both classical and machine-learning based image analysis solutions, as adapted from a recently proposed Food and Drug Administration regulatory framework for modifications to artificial intelligence/machine learning-based software as a medical device. These approaches are beneficial for any type of toxicopathologic study which uses the described end points and can be adjusted based on the intended use of the image analysis solution.


Asunto(s)
Inteligencia Artificial , Procesamiento de Imagen Asistido por Computador , Humanos , Interpretación de Imagen Asistida por Computador , Microscopía , Programas Informáticos
5.
Arch Pathol Lab Med ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38649149

RESUMEN

CONTEXT.­: Artificial intelligence is a transforming technology for anatomic pathology. Involvement within the workforce will foster support for algorithm development and implementation. OBJECTIVE.­: To develop a supportive ecosystem that enables pathologists with variable expertise in artificial intelligence to create algorithms in a development environment with seamless transition to a production environment. RESULTS.­: The development team considered internal development and vended solutions. Because of the extended timeline and resource requirements for internal development, a decision was made to use a vended solution. Vendor proposals were solicited and reviewed by pathologists, IT, and security groups. A vendor was selected and pipelines for development and production were established. Proposals for development were solicited from the pathology department. Eighty-four investigators were selected for the initial cohort, receiving training and access to dedicated subject matter experts. A total of 30 of 31 projects progressed through the model development process of annotating, training, and validation. Based on these projects, 15 abstracts were submitted to national meetings. CONCLUSIONS.­: Democratizing artificial intelligence by creating an ecosystem to support pathologists with varying levels of expertise can break down entry barriers, reduce overall cost of algorithm development, improve algorithm quality, and enhance the speed of adoption.

6.
Clin Cancer Res ; 30(9): 1811-1821, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38421684

RESUMEN

PURPOSE: There is a need to improve current risk stratification of stage II colorectal cancer to better inform risk of recurrence and guide adjuvant chemotherapy. We sought to examine whether integration of QuantCRC, a digital pathology biomarker utilizing hematoxylin and eosin-stained slides, provides improved risk stratification over current American Society of Clinical Oncology (ASCO) guidelines. EXPERIMENTAL DESIGN: ASCO and QuantCRC-integrated schemes were applied to a cohort of 398 mismatch-repair proficient (MMRP) stage II colorectal cancers from three large academic medical centers. The ASCO stage II scheme was taken from recent guidelines. The QuantCRC-integrated scheme utilized pT3 versus pT4 and a QuantCRC-derived risk classification. Evaluation of recurrence-free survival (RFS) according to these risk schemes was compared using the log-rank test and HR. RESULTS: Integration of QuantCRC provides improved risk stratification compared with the ASCO scheme for stage II MMRP colorectal cancers. The QuantCRC-integrated scheme placed more stage II tumors in the low-risk group compared with the ASCO scheme (62.5% vs. 42.2%) without compromising excellent 3-year RFS. The QuantCRC-integrated scheme provided larger HR for both intermediate-risk (2.27; 95% CI, 1.32-3.91; P = 0.003) and high-risk (3.27; 95% CI, 1.42-7.55; P = 0.006) groups compared with ASCO intermediate-risk (1.58; 95% CI, 0.87-2.87; P = 0.1) and high-risk (2.24; 95% CI, 1.09-4.62; P = 0.03) groups. The QuantCRC-integrated risk groups remained prognostic in the subgroup of patients that did not receive any adjuvant chemotherapy. CONCLUSIONS: Incorporation of QuantCRC into risk stratification provides a powerful predictor of RFS that has potential to guide subsequent treatment and surveillance for stage II MMRP colorectal cancers.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales , Reparación de la Incompatibilidad de ADN , Estadificación de Neoplasias , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/diagnóstico , Femenino , Masculino , Persona de Mediana Edad , Medición de Riesgo/métodos , Anciano , Pronóstico , Recurrencia Local de Neoplasia/patología , Adulto
7.
J Pathol Inform ; 13: 100144, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36268110

RESUMEN

Background: In an attempt to provide quantitative, reproducible, and standardized analyses in cases of eosinophilic esophagitis (EoE), we have developed an artificial intelligence (AI) digital pathology model for the evaluation of histologic features in the EoE/esophageal eosinophilia spectrum. Here, we describe the development and technical validation of this novel AI tool. Methods: A total of 10 726 objects and 56.2 mm2 of semantic segmentation areas were annotated on whole-slide images, utilizing a cloud-based, deep learning artificial intelligence platform (Aiforia Technologies, Helsinki, Finland). Our training set consisted of 40 carefully selected digitized esophageal biopsy slides which contained the full spectrum of changes typically seen in the setting of esophageal eosinophilia, ranging from normal mucosa to severe abnormalities with regard to each specific features included in our model. A subset of cases was reserved as independent "test sets" in order to assess the validity of the AI model outside the training set. Five specialized experienced gastrointestinal pathologists scored each feature blindly and independently of each other and of AI model results. Results: The performance of the AI model for all cell type features was similar/non-inferior to that of our group of GI pathologists (F1-scores: 94.5-94.8 for AI vs human and 92.6-96.0 for human vs human). Segmentation area features were rated for accuracy using the following scale: 1. "perfect or nearly perfect" (95%-100%, no significant errors), 2. "very good" (80%-95%, only minor errors), 3. "good" (70%-80%, significant errors but still captures the feature well), 4. "insufficient" (less than 70%, significant errors compromising feature recognition). Rating scores for tissue (1.01), spongiosis (1.15), basal layer (1.05), surface layer (1.04), lamina propria (1.15), and collagen (1.11) were in the "very good" to "perfect or nearly perfect" range, while degranulation (2.23) was rated between "good" and "very good". Conclusion: Our newly developed AI-based tool showed an excellent performance (non-inferior to a group of experienced GI pathologists) for the recognition of various histologic features in the EoE/esophageal mucosal eosinophilia spectrum. This tool represents an important step in creating an accurate and reproducible method for semi-automated quantitative analysis to be used in the evaluation of esophageal biopsies in this clinical context.

8.
Acta Neuropathol Commun ; 9(1): 141, 2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-34419154

RESUMEN

Traditionally, analysis of neuropathological markers in neurodegenerative diseases has relied on visual assessments of stained sections. Resulting semiquantitative scores often vary between individual raters and research centers, limiting statistical approaches. To overcome these issues, we have developed six deep learning-based models, that identify some of the most characteristic markers of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). The deep learning-based models are trained to differentially detect parenchymal amyloid ß (Aß)-plaques, vascular Aß-deposition, iron and calcium deposition, reactive astrocytes, microglia, as well as fibrin extravasation. The models were trained on digitized histopathological slides from brains of patients with AD and CAA, using a workflow that allows neuropathology experts to train convolutional neural networks (CNNs) on a cloud-based graphical interface. Validation of all models indicated a very good to excellent performance compared to three independent expert human raters. Furthermore, the Aß and iron models were consistent with previously acquired semiquantitative scores in the same dataset and allowed the use of more complex statistical approaches. For example, linear mixed effects models could be used to confirm the previously described relationship between leptomeningeal CAA severity and cortical iron accumulation. A similar approach enabled us to explore the association between neuroinflammation and disparate Aß pathologies. The presented workflow is easy for researchers with pathological expertise to implement and is customizable for additional histopathological markers. The implementation of deep learning-assisted analyses of histopathological slides is likely to promote standardization of the assessment of neuropathological markers across research centers, which will allow specific pathophysiological questions in neurodegenerative disease to be addressed in a harmonized way and on a larger scale.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Angiopatía Amiloide Cerebral/patología , Aprendizaje Profundo/tendencias , Redes Neurales de la Computación , Enfermedad de Alzheimer/metabolismo , Astrocitos/metabolismo , Astrocitos/patología , Encéfalo/metabolismo , Angiopatía Amiloide Cerebral/metabolismo , Humanos , Microglía/metabolismo , Microglía/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA