Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pediatr Gastroenterol Nutr ; 78(5): 1027-1037, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38558281

RESUMEN

OBJECTIVES: Recent studies have suggested a link between type 1 diabetes mellitus (T1D) and metabolic dysfunction associated steatotic liver disease (MASLD) in children and adolescent, but longitudinal evidence is lacking. This study aimed to investigate the potential association between poorly controlled T1D and elevated alanine aminotransferase (ALT), serving as a proxy for MASLD in children and adolescents over time. METHODS: The study included 32,325 children aged 2-17 years with T1D from Germany, Austria, and Switzerland who had undergone at least one assessment of liver enzyme levels recorded in the Diabetes-Patienten- Verlaufsdokumentation registry. Multivariable logistic and Cox regression models were calculated to show possible associations between T1D and elevated ALT values (>26 U/L in males, >22 U/L in females) as a proxy for MASLD. RESULTS: Children with poorly controlled T1D (HbA1c > 11%) exhibited increased odds of elevated ALT values, after adjustment for age, sex, diabetes duration and overweight (odds ratio [OR] 2.54; 95% confidence interval [CI], 2.10-3.10; p < 0.01). This finding is substantiated by a longitudinal analysis, which reveals that inadequately controlled T1D was associated with a higher hazard ratio (HR) of elevated ALT values compared to children with controlled T1D over an observation period extending up to 5.5 (HR: 1.54; 95% CI, 1.19-2.01; p < 0.01). CONCLUSION: In conclusion, the current study strongly links poorly controlled T1D in children and adolescents to MASLD irrespective of overweight. This association is not only present cross-sectionally but also increases over time. The study underscores the critical role of effective diabetes management in reducing the risk of MASLD in this population.


Asunto(s)
Alanina Transaminasa , Diabetes Mellitus Tipo 1 , Humanos , Masculino , Niño , Femenino , Adolescente , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/sangre , Preescolar , Factores de Riesgo , Suiza/epidemiología , Alemania/epidemiología , Alanina Transaminasa/sangre , Austria/epidemiología , Hígado Graso/etiología , Hígado Graso/complicaciones , Estudios Longitudinales , Sistema de Registros
2.
Pharmacol Ther ; 253: 108565, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38052308

RESUMEN

Pexidartinib (PLX3397) is a small molecule receptor tyrosine kinase inhibitor of colony stimulating factor 1 receptor (CSF1R) with moderate selectivity over other members of the platelet derived growth factor receptor family. It is approved for treatment of tenosynovial giant cell tumors (TGCT). CSF1R is highly expressed by microglia, which are macrophages of the central nervous system (CNS) that defend the CNS against injury and pathogens and contribute to synapse development and plasticity. Challenged by pathogens, apoptotic cells, debris, or inflammatory molecules they adopt a responsive state to propagate the inflammation and eventually return to a homeostatic state. The phenotypic switch may fail, and disease-associated microglia contribute to the pathophysiology in neurodegenerative or neuropsychiatric diseases or long-lasting detrimental brain inflammation after brain, spinal cord or nerve injury or ischemia/hemorrhage. Microglia also contribute to the growth permissive tumor microenvironment of glioblastoma (GBM). In rodents, continuous treatment for 1-2 weeks via pexidartinib food pellets leads to a depletion of microglia and subsequent repopulation from the remaining fraction, which is aided by peripheral monocytes that search empty niches for engraftment. The putative therapeutic benefit of such microglia depletion or forced renewal has been assessed in almost any rodent model of CNS disease or injury or GBM with heterogeneous outcomes, but a tendency of partial beneficial effects. So far, microglia monitoring e.g. via positron emission imaging is not standard of care for patients receiving Pexidartinib (e.g. for TGCT), so that the depletion and repopulation efficiency in humans is still largely unknown. Considering the virtuous functions of microglia, continuous depletion is likely no therapeutic option but short-lasting transient partial depletion to stimulate microglia renewal or replace microglia in genetic disease in combination with e.g. stem cell transplantation or as part of a multimodal concept in treatment of glioblastoma appears feasible. The present review provides an overview of the preclinical evidence pro and contra microglia depletion as a therapeutic approach.


Asunto(s)
Glioblastoma , Microglía , Humanos , Aminopiridinas/farmacología , Pirroles/metabolismo , Pirroles/farmacología , Microambiente Tumoral
3.
Cell Biosci ; 13(1): 155, 2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37635256

RESUMEN

BACKGROUND: Pain in early life may impact on development and risk of chronic pain. We developed an optogenetic Cre/loxP mouse model of "early-life-pain" (ELP) using mice with transgenic expression of channelrhodopsin-2 (ChR2) under control of the Advillin (Avil) promoter, which drives expression of transgenes predominantly in isolectin B4 positive non-peptidergic nociceptors in postnatal mice. Avil-ChR2 (Cre +) and ChR2-flfl control mice were exposed to blue light in a chamber once daily from P1-P5 together with their Cre-negative mother. RESULTS: ELP caused cortical hyperexcitability at P8-9 as assessed via multi-electrode array recordings that coincided with reduced expression of synaptic genes (RNAseq) including Grin2b, neurexins, piccolo and voltage gated calcium and sodium channels. Young adult (8-16 wks) Avil-ChR2 mice presented with nociceptive hypersensitivity upon heat or mechanical stimulation, which did not resolve up until one year of age. The persistent hypersensitivy to nociceptive stimuli was reflected by increased calcium fluxes in primary sensory neurons of aged mice (1 year) upon capsaicin stimulation. Avil-ChR2 mice behaved like controls in maze tests of anxiety, social interaction, and spatial memory but IntelliCage behavioral studies revealed repetitive nosepokes and corner visits and compulsive lickings. Compulsiveness at the behavioral level was associated with a reduction of sphingomyelin species in brain and plasma lipidomic studies. Behavioral studies were done with female mice. CONCLUSION: The results suggest that ELP may predispose to chronic "pain" and compulsive psychopathology in part mediated by alterations of sphingolipid metabolism, which have been previously described in the context of addiction and psychiatric diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA