Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Inorg Chem ; 62(50): 20646-20654, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37625137

RESUMEN

44gSc presents a particular interest for application in nuclear medicine for positron emission tomography (PET) due to its favorable nuclear decay properties (t1/2 = 3.97 h, Emax = 1.47 MeV, branching ratio 94.3% ß+). Its nuclear isomer 44mSc (t1/2 = 58.61 h) decays by isomeric transition (IT) into 44gSc, accompanied by ≈12% of conversion electron emission, which can cause a partial release of the daughter 44gSc from the chelate complex. A 13 MeV cyclotron at TRIUMF was used to produce both 44mSc and 44gSc via the natCa(p,n)44m,gSc reaction. A 44mSc/44gSc generator was designed by using a Strata C-18E cartridge. After several tested systems, a successful separation method was developed using DOTATOC as a chelator, a Strata C-18E cartridge as a generator column, and an elution solution of 0.1 M NH4-α-HIB. The yield of the generator with the daughter 44gSc release was equal to 9.8 ± 1.0% (or ≈80% per portion of conversion). This result shows the important role of after-effects in the design of radionuclide generators. Nuclear cross-section calculations were applied using the TALYS code to allow for the determination of the most promising alternative routes for 44mSc production, which will enable the development of a full-scale 44mSc/44gSc radionuclide generator based on after-effects.

2.
Molecules ; 28(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37049918

RESUMEN

Terbium radioisotopes (149Tb, 152Tb, 155Tb, 161Tb) offer a unique class of radionuclides which encompass all four medicinally relevant nuclear decay modalities (α, ß+, γ, ß-/e-), and show high potential for the development of element-matched theranostic radiopharmaceuticals. The goal of this study was to design, synthesise, and evaluate the suitability of crown-TATE as a new peptide-conjugate for radiolabelling of [155Tb]Tb3+ and [161Tb]Tb3+, and to assess the imaging and pharmacokinetic properties of each radiotracer in tumour-bearing mice. [155Tb]Tb-crown-TATE and [161Tb]Tb-crown-TATE were prepared efficiently under mild conditions, and exhibited excellent stability in human serum (>99.5% RCP over 7 days). Longitudinal SPECT/CT images were acquired for 155Tb- and 161Tb- labelled crown-TATE in male NRG mice bearing AR42J tumours. The radiotracers, [155Tb]Tb-crown-TATE and [161Tb]Tb-crown-TATE, showed high tumour targeting (32.6 and 30.0 %ID/g, respectively) and minimal retention in non-target organs at 2.5 h post-administration. Biodistribution studies confirmed the SPECT/CT results, showing high tumour uptake (38.7 ± 8.0 %ID/g and 38.5 ± 3.5 %ID/g, respectively) and favourable tumour-to-background ratios. Blocking studies further confirmed SSTR2-specific tumour accumulation. Overall, these findings suggest that crown-TATE has great potential for element-matched molecular imaging and radionuclide therapy using 155Tb and 161Tb.


Asunto(s)
Tumores Neuroendocrinos , Masculino , Humanos , Ratones , Animales , Medicina de Precisión , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único/métodos , Radioisótopos/uso terapéutico , Radiofármacos/farmacocinética
3.
Bioconjug Chem ; 33(7): 1422-1436, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35801668

RESUMEN

Auger electron therapy exploits the cytotoxicity of low-energy electrons emitted during radioactive decay that travel very short distances (typically <1 µm). 201Tl, with a half-life of 73 h, emits ∼37 Auger and other secondary electrons per decay and can be tracked in vivo as its gamma emissions enable SPECT imaging. Despite the useful nuclear properties of 201Tl, satisfactory bifunctional chelators to incorporate it into bioconjugates for molecular targeting have not been developed. H4pypa, H5decapa, H4neunpa-NH2, and H4noneunpa are multidentate N- and O-donor chelators that have previously been shown to have high affinity for 111In, 177Lu, and 89Zr. Herein, we report the synthesis and serum stability of [nat/201Tl]Tl3+ complexes with H4pypa, H5decapa, H4neunpa-NH2, and H4noneunpa. All ligands quickly and efficiently formed complexes with [201Tl]Tl3+ that gave simple single-peak radiochromatograms and showed greatly improved serum stability compared to DOTA and DTPA. [natTl]Tl-pypa was further characterized using nuclear magnetic resonance spectroscopy (NMR), mass spectroscopy (MS), and X-ray crystallography, showing evidence of the proton-dependent presence of a nine-coordinate complex and an eight-coordinate complex with a pendant carboxylic acid group. A prostate-specific membrane antigen (PSMA)-targeting bioconjugate of H4pypa was synthesized and radiolabeled. The uptake of [201Tl]Tl-pypa-PSMA in DU145 PSMA-positive and PSMA-negative prostate cancer cells was evaluated in vitro and showed evidence of bioreductive release of 201Tl and cellular uptake characteristic of unchelated [201Tl]TlCl. SPECT/CT imaging was used to probe the in vivo biodistribution and stability of [201Tl]Tl-pypa-PSMA. In healthy animals, [201Tl]Tl-pypa-PSMA did not show the myocardial uptake that is characteristic of unchelated 201Tl. In mice bearing DU145 PSMA-positive and PSMA-negative prostate cancer xenografts, the uptake of [201Tl]Tl-pypa-PSMA in DU145 PSMA-positive tumors was higher than that in DU145 PSMA-negative tumors but insufficient for useful tumor targeting. We conclude that H4pypa and related ligands represent an advance compared to conventional radiometal chelators such as DOTA and DTPA for Tl3+ chelation but do not resist dissociation for long periods in the biological environment due to vulnerability to reduction of Tl3+ and subsequent release of Tl+. However, this is the first report describing the incorporation of [201Tl]Tl3+ into a chelator-peptide bioconjugate and represents a significant advance in the field of 201Tl-based radiopharmaceuticals. The design of the next generation of chelators must include features to mitigate this susceptibility to bioreduction, which does not arise for other trivalent heavy radiometals.


Asunto(s)
Medicina Nuclear , Neoplasias de la Próstata , Animales , Antígenos de Superficie/metabolismo , Línea Celular Tumoral , Quelantes/química , Glutamato Carboxipeptidasa II/metabolismo , Humanos , Masculino , Ratones , Ácido Pentético , Neoplasias de la Próstata/patología , Radiofármacos/química , Radioisótopos de Talio , Distribución Tisular
4.
Bioconjug Chem ; 33(3): 505-522, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35239331

RESUMEN

With the emergence of [225Ac]Ac3+ as a therapeutic radionuclide for targeted α therapy (TAT), access to clinical quantities of the potent, short-lived α-emitter [213Bi]Bi3+ (t1/2 = 45.6 min) will increase over the next decade. With this in mind, the nonadentate chelator, H4neunpa-NH2, has been investigated as a ligand for chelation of [213Bi]Bi3+ in combination with [111In]In3+ as a suitable radionuclidic pair for TAT and single photon emission computed tomography (SPECT) diagnostics. Nuclear magnetic resonance (NMR) spectroscopy was utilized to assess the coordination characteristics of H4neunpa-NH2 on complexation of [natBi]Bi3+, while the solid-state structure of [natBi][Bi(neunpa-NH3)] was characterized via X-ray diffraction (XRD) studies, and density functional theory (DFT) calculations were performed to elucidate the conformational geometries of the metal complex in solution. H4neunpa-NH2 exhibited fast complexation kinetics with [213Bi]Bi3+ at RT achieving quantitative radiolabeling within 5 min at 10-8 M ligand concentration, which was accompanied by the formation of a kinetically inert complex. Two bioconjugates incorporating the melanocortin 1 receptor (MC1R) targeting peptide Nle-CycMSHhex were synthesized featuring two different covalent linkers for in vivo evaluation with [213Bi]Bi3+ and [111In]In3+. High molar activities of 7.47 and 21.0 GBq/µmol were achieved for each of the bioconjugates with [213Bi]Bi3+. SPECT/CT scans of the [111In]In3+-labeled tracer showed accumulation in the tumor over time, which was accompanied by high liver uptake and clearance via the hepatic pathway due to the high lipophilicity of the covalent linker. In vivo biodistribution studies in C57Bl/6J mice bearing B16-F10 tumor xenografts showed good tumor uptake (5.91% ID/g) at 1 h post-administration with [213Bi][Bi(neunpa-Ph-Pip-Nle-CycMSHhex)]. This study demonstrates H4neunpa-NH2 to be an effective chelating ligand for [213Bi]Bi3+ and [111In]In3+, with promising characteristics for further development toward theranostic applications.


Asunto(s)
Radiofármacos , alfa-MSH , Animales , Línea Celular Tumoral , Quelantes/química , Humanos , Ligandos , Ratones , Ratones Endogámicos C57BL , Radiofármacos/química , Radiofármacos/uso terapéutico , Nanomedicina Teranóstica , Distribución Tisular , alfa-MSH/química , alfa-MSH/metabolismo
5.
Bioconjug Chem ; 33(12): 2381-2397, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36378809

RESUMEN

A new, high-denticity, bifunctional ligand─H3TPAN-triazole-Bn-NH2─has been synthesized and studied in complexation with [225Ac]Ac3+ and [111In]In3+ for radiopharmaceutical applications. The bifunctional chelator is readily synthesized, using a high-yielding four-step prep, which is highly adaptable and allows for straightforward incorporation of different covalent linkers using CuI-catalyzed alkyne-azide cycloaddition (click) chemistry. Nuclear magnetic resonance (NMR) studies of H3TPAN-triazole-Bn-NH2 with La3+ and In3+ metal ions show the formation of a single, asymmetric complex with each ion in solution, corroborated by density functional theory (DFT) calculations. Radiolabeling studies with [225Ac]Ac3+ and [111In]In3+ showed highly effective complexation, achieving quantitative radiochemical conversions at low ligand concentrations (<10-6 M) under mild conditions (RT, 10 min), which is further accompanied by high stability in human serum. The bioconjugate─H3TPAN-triazole-Bn-Aoc-Pip-Nle-CycMSHhex─was prepared for targeting of MC1R-positive tumors, and the corresponding 111In-radiolabeled tracer was studied in vivo. SPECT/CT and biodistribution studies in C57BL/6J mice bearing B16-F10 tumors were performed, with the radiotracer showing good in vivo stability; tumor uptake was achieved. This work highlights a new promising and versatile bifunctional chelator, easily prepared and encouraging for 225Ac/111In theranostics.


Asunto(s)
Medicina de Precisión , Triazoles , Ratones , Animales , Humanos , Distribución Tisular , Línea Celular Tumoral , Ratones Endogámicos C57BL , Quelantes/química , Radiofármacos/química
6.
Bioconjug Chem ; 33(10): 1900-1921, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36126334

RESUMEN

The nuclear decay characteristics of 225Ac (Eα = 5-8 MeV, linear energy transfer (LET) = ∼100 keV/µm, t1/2 = 9.92 days) are well recognized as advantageous for the treatment of primary and metastatic tumors; however, suitable chelation systems are required, which can accommodate this radiometal. Since 225Ac does not possess any suitable low-energy, high abundance γ-ray emissions for nuclear imaging, there is a clear need for the development of other companion radionuclides with similar coordination characteristics and comparable half-lives, which can be applied in diagnostics. H4picoopa was designed and executed as a high-denticity ligand for chelation of [225Ac]Ac3+, and the complexation characteristics have been explored through nuclear magnetic resonance (NMR) spectroscopy, solution thermodynamic stability studies, and radiolabeling. The ligand shows highly favorable complexation with La3+ (pM = 17.6), Lu3+ (pM = 21.3), and In3+ (pM = 31.2) and demonstrates effective radiolabeling of both [225Ac]Ac3+ and [111In]In3+ ions achieving quantitative radiochemical conversions (RCCs) under mild conditions (RT, 10 min), accompanied by high serum stability (>97% radiochemical purity (RCP) over 6 days). A bifunctional analogue of H4picoopa was synthesized and conjugated to the Pip-Nle-CycMSHhex peptide for targeting of MC1R positive melanoma tumors. In vivo single-photon emission computed tomography (SPECT) and biodistribution studies of the 111In-radiolabeled bioconjugate in mice bearing B16-F10 tumors showed good radiotracer stability, although improved tumor targeting could not be achieved for imaging purposes. This work highlights H4picoopa as a very promising platform for application of [225Ac]Ac3+ and [111In]In3+ as a theranostic pair and allows great versatility for the incorporation of other directing vectors. The logical synthetic approach reported here for bifunctional H4picoopa, involving an azide-functionalized covalent linker and CuI-catalyzed alkyne-azide cycloaddition, allows for ease of optimization of bioconjugate pharmacokinetics and will be valuable for further radiopharmaceutical applications moving forward.


Asunto(s)
Melanoma , Radiofármacos , Animales , Ratones , Radiofármacos/química , Distribución Tisular , Ligandos , Medicina de Precisión , Azidas , Quelantes/química , Radioisótopos , Línea Celular Tumoral , Péptidos , Alquinos
7.
Inorg Chem ; 61(2): 801-806, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34965102

RESUMEN

The radionuclides 225Ac3+ and 213Bi3+ possess favorable physical properties for targeted alpha therapy (TAT), a therapeutic approach that leverages α radiation to treat cancers. A chelator that effectively binds and retains these radionuclides is required for this application. The development of ligands for this purpose, however, is challenging because the large ionic radii and charge-diffuse nature of these metal ions give rise to weaker metal-ligand interactions. In this study, we evaluated two 18-membered macrocyclic chelators, macrodipa and py-macrodipa, for their ability to complex 225Ac3+ and 213Bi3+. Their coordination chemistry with Ac3+ was probed computationally and with Bi3+ experimentally via NMR spectroscopy and X-ray crystallography. Furthermore, radiolabeling studies were conducted, revealing the efficient incorporation of both 225Ac3+ and 213Bi3+ by py-macrodipa that matches or surpasses the well-known chelators macropa and DOTA. Incubation in human serum at 37 °C showed that ∼90% of the 225Ac3+-py-macrodipa complex dissociates after 1 d. The Bi3+-py-macrodipa complex possesses remarkable kinetic inertness reflected by an EDTA transchelation challenge study, surpassing that of Bi3+-macropa. This work establishes py-macrodipa as a valuable candidate for 213Bi3+ TAT, providing further motivation for its implementation within new radiopharmaceutical agents.


Asunto(s)
Quelantes
8.
Inorg Chem ; 61(24): 9119-9137, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35678752

RESUMEN

A new decadentate chelator, H2ampa, was designed to be a potential radiopharmaceutical chelator component. The chelator involves both amide and picolinate functional groups on a large non-macrocyclic, ether-bridged backbone. With its large scaffold, H2ampa was paired with [nat/203Pb]Pb2+, [nat/213Bi]Bi3+, and natLa3+/[225Ac]Ac3+ ions. Nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry were used to study the non-radioactive metal complexes. A single crystal of [Bi(ampa)](NO3) was obtained; its asymmetric, 10-coordinate complex structure was revealed by X-ray diffraction. Optimal conformations of the metal complexes were assessed by density functional theory studies to provide further structural information. Solution studies providing thermodynamic insights into metal complex formation revealed H2ampa coordinated Bi3+, Pb2+, and La3+ ions to obtain pM values of 26, 14.8, and 15.1, respectively. Preliminary concentration-dependent radiolabeling experiments were carried out between H2ampa and three different radiometals to evaluate their compatibility for radiopharmaceutical applications. The chelator radiolabeled [203Pb]Pb2+, [213Bi]Bi3+, and [225Ac]Ac3+ in short reaction times (7-30 min), at dilute concentrations, and under mild conditions. Thus, H2ampa was proven to be a versatile chelator able to well coordinate a small range of radiometals frequently considered to be alpha therapeutic candidates.


Asunto(s)
Quelantes , Complejos de Coordinación , Quelantes/química , Complejos de Coordinación/química , Iones , Plomo , Ligandos , Radiofármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico
9.
Inorg Chem ; 60(6): 4076-4092, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33635057

RESUMEN

A comparative investigation of two structurally related potentially nonadentate chelating ligands, H4neunpa-NH2 and H4noneunpa, has been undertaken to examine the influence of bifunctionalization on their coordination chemistry and metal ion selectivity. Significantly improved synthetic routes for each compound have been developed, employing straightforward high-yielding strategies. Radiolabeling studies with [44Sc]Sc3+, [111In]In3+, [177Lu]Lu3+, and [225Ac]Ac3+ revealed a sharp contrast between the affinity of each chelator for large radiometal ions. H4noneunpa demonstrated highly effective coordination of [177Lu]Lu3+ and [225Ac]Ac3+ achieving quantitative radiochemical yields (>98%) at ligand concentrations of 10-6 M (room temperature (RT), 10 min), with excellent stability when challenged in human serum, while H4neunpa-NH2 was unable to complex either metal ion effectively. Nuclear magnetic resonance (NMR) spectroscopy was employed to explore the coordination chemistry of each chelating ligand with nonradioactive metal ions, spanning a range of ionic radii and coordination numbers. A comprehensive conformational analysis of each metal complex was undertaken using density functional theory (DFT) calculations to explore the coordination geometries and explain the discrepancy in binding characteristics. Theoretical simulations revealed notable differences in the coordination geometry and apparent denticity of each ligand, which together account for the observed selectivity in metal binding and have important implications for the future design of complexes based upon this framework to target large radiometal ion coordination.

10.
Inorg Chem ; 60(12): 9199-9211, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34102841

RESUMEN

The radionuclide 213Bi can be applied for targeted α therapy (TAT): a type of nuclear medicine that harnesses α particles to eradicate cancer cells. To use this radionuclide for this application, a bifunctional chelator (BFC) is needed to attach it to a biological targeting vector that can deliver it selectively to cancer cells. Here, we investigated six macrocyclic ligands as potential BFCs, fully characterizing the Bi3+ complexes by NMR spectroscopy, mass spectrometry, and elemental analysis. Solid-state structures of three complexes revealed distorted coordination geometries about the Bi3+ center arising from the stereochemically active 6s2 lone pair. The kinetic properties of the Bi3+ complexes were assessed by challenging them with a 1000-fold excess of the chelating agent diethylenetriaminepentaacetic acid (DTPA). The most kinetically inert complexes contained the most basic pendent donors. Density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM) calculations were employed to investigate this trend, suggesting that the kinetic inertness is not correlated with the extent of the 6s2 lone pair stereochemical activity, but with the extent of covalency between pendent donors. Lastly, radiolabeling studies of 213Bi (30-210 kBq) with three of the most promising ligands showed rapid formation of the radiolabeled complexes at room temperature within 8 min for ligand concentrations as low as 10-7 M, corresponding to radiochemical yields of >80%, thereby demonstrating the promise of this ligand class for use in 213Bi TAT.


Asunto(s)
Bismuto/uso terapéutico , Quelantes/uso terapéutico , Complejos de Coordinación/uso terapéutico , Éteres Corona/uso terapéutico , Neoplasias/tratamiento farmacológico , Radiofármacos/uso terapéutico , Bismuto/química , Quelantes/síntesis química , Quelantes/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Éteres Corona/química , Teoría Funcional de la Densidad , Humanos , Cinética , Ligandos , Estructura Molecular , Radiofármacos/síntesis química , Radiofármacos/química
11.
Inorg Chem ; 60(16): 12186-12196, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34310113

RESUMEN

A new versatile chelating ligand for intermediate size and softness radiometals [64Cu]Cu2+ and [111In]In3+, H2pyhox, was synthesized by introducing pyridine as a new donor moiety to complement 8-hydroxyquinoline on an ethylenediamine backbone. The combination of pyridine and oxine as donor sets was explored through structural analysis, and crystals of the three metal complexes with Cu2+, La3+, and In3+ demonstrate how the ligand adapts to accommodate metal ions of different sizes and charge. Exhaustive in-batch UV solution studies characterized the protonation constants of the free ligand as well as the formation constants of the metal complexes with Cu2+, In3+, and La3+. Preliminary concentration-dependent radiolabeling studies with [111In]In3+ and [64Cu]Cu2+ show the robustness of H2pyhox to successfully coordinate both radiometals under mild conditions (<15 min, room temperature, pH 6). H2pyhox is the first oxinate ligand to successfully radiolabel [225Ac]Ac3+, albeit only at high concentrations (0.1-1 mM) with gentle heating to 37 °C. Whole serum, protein, and ligand challenge assays further demonstrate the kinetic inertness of the [111In]In3+ and [64Cu]Cu2+ radiometal-ligand complexes, confirming H2pyhox to be a promising versatile radiopharmaceutical chelator.

12.
Analyst ; 140(9): 3113-20, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25751126

RESUMEN

Curcumin is a versatile anti-inflammatory and anti-cancer agent known for its low bioavailability, which could be improved by developing materials capable of binding and releasing drug in a controlled fashion. The present study describes the preparation of magnetic nano-sized Molecularly Imprinted Polymers (nanoMIPs) for the controlled delivery of curcumin and their high throughput characterisation using microtitre plates modified with magnetic inserts. NanoMIPs were synthesised using functional monomers chosen with the aid of molecular modelling. The rate of release of curcumin from five polymers was studied under aqueous conditions and was found to correlate well with the binding energies obtained computationally. The presence of specific monomers was shown to be significant in ensuring effective binding of curcumin and to the rate of release obtained. Characterisation of the polymer particles was carried out using dynamic light scattering (DLS) technique and scanning electron microscopy (SEM) in order to establish the relationship between irradiation time and particle size. The protocols optimised during this study could be used as a blueprint for the development of nanoMIPs capable of the controlled release of potentially any compound of interest.


Asunto(s)
Antiinflamatorios no Esteroideos/administración & dosificación , Antineoplásicos/administración & dosificación , Curcumina/administración & dosificación , Preparaciones de Acción Retardada/química , Imanes/química , Impresión Molecular/métodos , Polímeros/química , Humanos
13.
Phys Med Biol ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38925140

RESUMEN

Objective.225Ac radiopharmaceuticals have tremendous potential for targeted alpha therapy (TAT), however,225Ac (t1/2= 9.9 d) lacks direct gamma emissions forin vivoimaging.226Ac (t1/2= 29.4 h) is a promising element-equivalent matched diagnostic radionuclide for preclinical evaluation of225Ac radiopharmaceuticals.226Ac has two gamma emissions (158 keV and 230 keV) suitable for SPECT imaging. This work is the first feasibility study forin vivoquantitative226Ac SPECT imaging and validation of activity estimation.Approach.226Ac was produced at TRIUMF (Vancouver, Canada) with its Isotope Separator and Accelerator (ISAC) facility. [226Ac]Ac3+was radiolabelled with the bioconjugate crown-TATE developed for therapeutic targeting of neuroendocrine tumours (NET). Mice with AR42J tumour xenografts were injected with either 2 MBq of [226Ac]Ac-crown-TATE or 4 MBq of free [226Ac]Ac3+activity and were scanned at 1, 2.5, 5, and 24 h post injection in a preclinical microSPECT/CT. Quantitative SPECT images were reconstructed from the 158 keV and 230 keV photopeaks with attenuation, background, and scatter corrections. Image-based226Ac activity measurements were assessed from volumes of interest (VOIs) within tumours and organs of interest. Imaging data was compared withex vivobiodistribution measured via gamma counter.Main Results. We present, to the best of our knowledge, the first everin vivoquantitative SPECT images of226Ac activity distributions. Time-activity curves derived from SPECT images quantify thein vivobiodistribution of [226Ac]Ac-crown-TATE and free [226Ac]Ac3+activity. Image-based activity measurements in the tumours and organs of interest corresponded well withex vivobiodistribution measurements.Significance. Here in, we established the feasibility ofin vivo226Ac quantitative SPECT imaging for accurate measurement of actinium biodistribution in a preclinical model. This imaging method could quantitativein vivopharmacokinetic information essential for estimating toxicities, dosimetry, and therapeutic potency.

14.
Nucl Med Biol ; 136-137: 108925, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38796924

RESUMEN

BACKGROUND: Targeted radionuclide therapy is established as a highly effective strategy for the treatment of metastatic tumors; however, the co-development of suitable imaging companions to therapy remains significant challenge. Theranostic isotopes of terbium (149Tb, 152Tb, 155Tb, 161Tb) have the potential to provide chemically identical radionuclidic pairs, which collectively encompass all modes of nuclear decay relevant to nuclear medicine. Herein, we report the first radiochemistry and preclinical studies involving 155Tb- and 161Tb-labeled crown-αMSH, a small peptide-based bioconjugate suitable for targeting melanoma. METHODS: 155Tb was produced via proton induced spallation of Ta targets using the isotope separation and acceleration facility at TRIUMF with isotope separation on-line (ISAC/ISOL). The radiolabeling characteristics of crown-αMSH with 155Tb and/or 161Tb were evaluated by concentration-dependence radiolabeling studies, and radio-HPLC stability studies. LogD7.4 measurements were obtained for [161Tb]Tb-crown-αMSH. Competitive binding assays were undertaken to determine the inhibition constant for [natTb]Tb-crown-αMSH in B16-F10 cells. Pre-clinical biodistribution and SPECT/CT imaging studies of 155Tb and 161Tb labeled crown-αMSH were undertaken in male C57Bl/6 J mice bearing B16-F10 melanoma tumors to evaluate tumor specific uptake and imaging potential for each radionuclide. RESULTS: Quantitative radiolabeling of crown-αMSH with [155Tb]Tb3+ and [161Tb]Tb3+ was demonstrated under mild conditions (RT, 10 min) and low chelator concentrations; achieving high molar activities (23-29 MBq/nmol). Radio-HPLC studies showed [161Tb]Tb-crown-αMSH maintains excellent radiochemical purity in human serum, while gradual metabolic degradation is observed in mouse serum. Competitive binding assays showed the high affinity of [natTb]Tb-crown-αMSH toward MC1R. Two different methods for preparation of the [155Tb]Tb-crown-αMSH radiotracer were investigated and the impacts on the biodistribution profile in tumor bearing mice is compared. Preclinical in vivo studies of 155Tb- and 161Tb- labeled crown-αMSH were performed in parallel, in mice bearing B16-F10 tumors; where the biodistribution results showed similar tumor specific uptake (6.06-7.44 %IA/g at 2 h pi) and very low uptake in nontarget organs. These results were further corroborated through a series of single-photon emission computed tomography (SPECT) studies, with [155Tb]Tb-crown-αMSH and [161Tb]Tb-crown-αMSH showing comparable uptake profiles and excellent image contrast. CONCLUSIONS: Collectively, our studies highlight the promising characteristics of [155Tb]Tb-crown-αMSH and [161Tb]Tb-crown-αMSH as theranostic pair for nuclear imaging (155Tb) and radionuclide therapy (161Tb).

15.
J Med Chem ; 66(19): 13705-13730, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37738446

RESUMEN

Superior bifunctional chelating ligands, which can sequester both α-emitting radionuclides (225Ac, 213Bi) and their diagnostic companions (155Tb, 111In), remain a formidable challenge to translating targeted alpha therapy, with complementary diagnostic imaging, to the clinic. H4noneupaX, a chelating ligand with an unusual diametrically opposed arrangement of pendant donor groups, has been developed to this end. H4noneunpaX preferentially complexes Ln3+ and An3+ ions, forming thermodynamically stable (pLa = 17.8, pLu = 21.3) and kinetically inert complexes─single isomeric species by nuclear magnetic resonance and density functional theory. Metal binding versatility demonstrated in radiolabeling [111In]In3+, [155Tb]Tb3+, [177Lu]Lu3+, and [225Ac]Ac3+ achieved high molar activities under mild conditions. Efficient, scalable synthesis enabled in vivo evaluation of bifunctional H4noneunpaX conjugated to two octreotate peptides targeting neuroendocrine tumors. Single photon emission computed tomography/CT and biodistribution studies of 155Tb-radiotracers in AR42J tumor-bearing mice showed excellent image contrast, good tumor uptake, and high in vivo stability. H4noneunpaX shows significant potential for theranostic applications involving 225Ac/155Tb or 177Lu/155Tb.

16.
J Inorg Biochem ; 235: 111936, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35878576

RESUMEN

A new, bifunctional chelating ligand for immuno-Positron Emission Tomography (PET) was designed, synthesized, and conjugated to Trastuzumab for a proof-of-concept study with 89Zr. H4neunox was synthesized from the tris(2-aminoethyl)amine backbone, decorated with 8-hydroxyquinoline moieties, and utilizes a primary amine for functionalization. A maleimide moiety extends the chelator to create H4neunox-mal for antibody conjugation via maleimide-thiol click chemistry. Preliminary 89Zr radiolabeling of H4neunox indicated quantitative radiolabeling at 1 × 10-5 M, but improved inertness towards human serum (96% intact at 7 d) and Fe3+ (92% intact at 24 h) compared to the previously synthesized H5decaox. The chelator was successfully conjugated to the monoclonal antibody, Trastuzumab, and used in preliminary radiolabeling reactions (37 °C, 2 h) with 89Zr. Radiochemical assessments of the new H4neunox-Trastuzumab conjugate include 89Zr radiolabeling, spin filter purification, cell-binding immunoreactivity, and in vivo PET imaging and biodistribution in SKOV-3 tumour bearing nude mice, performed in comparison with the desferrioxamine B analog, DFO-Trastuzumab. The [89Zr]Zr(neunox-Trastuzumab) showed lowered inertness towards serum (76% intact at 24 h) as well as demetallation in vivo through bone uptake (21% ID/g) in PET imaging and biodistribution studies when compared to [89Zr]Zr(DFO-Trastuzumab). Although the combination of the chelator and antibody had detrimental effects on their intended purposes, nonetheless, the primary amine platform of H4neunox developed here provides an oxine-based bifunctional ligand for further derivatizations with other targeting vectors.


Asunto(s)
Deferoxamina , Circonio , Animales , Línea Celular Tumoral , Quelantes , Humanos , Ligandos , Maleimidas , Ratones , Ratones Desnudos , Oxiquinolina , Tomografía de Emisión de Positrones/métodos , Distribución Tisular , Trastuzumab
17.
J Inorg Biochem ; 231: 111789, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35305407

RESUMEN

With the interest in radiometal-containing diagnostic and therapeutic pharmaceuticals increasing rapidly, appropriate ligands to coordinate completely and stably said radiometals is essential. Reported here are two novel, bis(amido)bis(oxinate)diamine ligands, H2amidohox (2,2'-(ethane-1,2-diylbis(((8-hydroxyquinolin-2-yl)methyl)azanediyl))diacetamide) and H2amidoC3hox (2,2'-(propane-1,3-diylbis(((8-hydroxyquinolin-2-yl)methyl)azanediyl))diacetamide), that combine two 8-hydroxyquinoline and amide donor groups and differ by one carbon in their 1,2-ethylenediamine vs. 1,3-diaminopropane backbones, respectively. Both ligands have been thoroughly studied via metal complexation, solution thermodynamics and radiolabeling with three radiometal ions: [nat/64Cu]Cu2+, [nat/111In]In3+, and [nat/203Pb]Pb2+. X-ray crystallography determined the structures of the hexacoordinated Cu2+-ligand complexes, indicating a better fit of Cu2+ to the H2amidohox binding pocket. Concentration dependent radiolabeling with [64Cu]Cu2+ was successfully quantitative as low as 1 µM with H2amidohox and 10 µM with H2amidoC3hox within 5 min at room temperature. However, [64Cu][Cu(amidohox)] maintained higher kinetic inertness against a superoxide dismutase enzyme-challenge assay and ligand challenges compared to the [64Cu][Cu(amidoC3hox)] counterpart. Similarly, H2amidohox had significantly higher radiochemical conversion with both [111In]In3+ (97% at 1 µM) and [203Pb]Pb2+ (97% at 100 µM) under mild conditions compared to H2amidoC3hox (76% with [111In]In3+ at 1 µM and 0% with [203Pb]Pb2+). By studying non-radioactive and radioactive complexation with both ligands, a comprehensive understanding of the coordination differences between two- and three­carbon diamine backbones is discussed. Overall, the ethylenediamine backbone of H2amidohox proves to be superior in rapid, mild radiolabeling and kinetic inertness towards competing ligands and proteins.


Asunto(s)
Diaminas , Plomo , Carbono , Cobre/química , Cristalografía por Rayos X , Ligandos , Nanomedicina Teranóstica
18.
Nucl Med Biol ; 104-105: 11-21, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34839209

RESUMEN

INTRODUCTION: Radiotherapy of cancer requires both alpha- and beta-particle emitting radionuclides, as these radionuclide types are efficient at destroying different types of tumors. Both classes of radionuclides require a vehicle, such as an antibody or a polymer, to be delivered and retained within the tumor. Polyglutamic acid (pGlu) is a polymer that has proven itself effective as a basis of drug-polymer conjugates in the clinic, while its derivatives have been used for pretargeted tumor imaging in a research setup. trans-Cyclooctene (TCO) modified pGlu is suitable for pretargeted imaging or therapy, as well as for intratumoral radionuclide therapy. In all cases, it becomes indirectly radiolabeled via the bioorthogonal click reaction with the tetrazine (Tz) molecule carrying the radionuclide. In this study, we report the radiolabeling of TCO-modified pGlu with either lutetium-177 (177Lu), a beta-particle emitter, or actinium-225 (225Ac), an alpha-particle emitter, using the click reaction between TCO and Tz. METHODS: A panel of Tz derivatives containing a metal ion binding chelator (DOTA or macropa) connected to the Tz moiety directly or through a polyethylene glycol (PEG) linker was synthesized and tested for their ability to chelate 177Lu and 225Ac, and click to pGlu-TCO. Radiolabeled 177Lu-pGlu and 225Ac-pGlu were isolated by size exclusion chromatography. The retention of 177Lu or 225Ac by the obtained conjugates was investigated in vitro in human serum. RESULTS: All DOTA-modified Tzs efficiently chelated 177Lu resulting in average radiochemical conversions (RCC) of >75%. Isolated radiochemical yields (RCY) for 177Lu-pGlu prepared from 177Lu-Tzs ranged from 31% to 55%. TLC analyses detected <5% unchelated 177Lu for all 177Lu-pGlu preparations over six days in human serum. For 225Ac chelation, optimized RCCs ranged from 61 ± 34% to quantitative for DOTA-Tzs and were quantitative for the macropa-modified Tz (>98%). Isolated radiochemical yields (RCY) for 225Ac-pGlu prepared from 225Ac-Tzs ranged from 28% to 51%. For 3 out of 5 225Ac-pGlu conjugates prepared from DOTA-Tzs, the amount of unchelated 225Ac stayed below 10% over six days in human serum, while 225Ac-pGlu prepared from macropa-Tz showed a steady release of up to 37% 225Ac. CONCLUSION: We labeled TCO-modified pGlu polymers with alpha- and beta-emitting radionuclides in acceptable RCYs. All 177Lu-pGlu preparations and some 225Ac-pGlu preparations showed excellent stability in human plasma. Our work shows the potential of pGlu as a vehicle for alpha- and beta-radiotherapy of tumors and demonstrated the usefulness of Tz ligation for indirect radiolabeling.


Asunto(s)
Lutecio , Polímeros , Animales , Línea Celular Tumoral , Humanos , Lutecio/química , Lutecio/uso terapéutico , Ratones , Ratones Desnudos , Péptidos , Radioquímica , Radiofármacos/química , Radiofármacos/uso terapéutico
19.
Dalton Trans ; 50(11): 3874-3886, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33629999

RESUMEN

Advances in nuclear medicine depend on chelating ligands that form highly stable and kinetically inert complexes with relevant radiometal ions for use in diagnosis or therapy. A new potentially decadentate ligand, H5decaox, was synthesised to incorporate two 8-hydroxyquinoline moieties on either end of a diethylenetriamine backbone decorated with three carboxylic acids, one at each N atom of the backbone. Metal complexation was assessed using nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS) with In3+, Zr4+ and La3+. Solution thermodynamic studies provided the stepwise protonation constants and metal formation constants, indicating a high affinity for both In3+ and Zr4+ (pIn = 32.3 and pZr = 34.7), and density functional theory (DFT) calculations provided insight into the coordination environments with either metal ion. Concentration dependent radiolabeling experiments with [111In]InCl3 and [89Zr]ZrCl4 showed promise as quantitative radiolabeling (>95%) occurred at micromolar concentrations, under mild, near-physiological conditions of pH 7 and room temperature for 30 minutes. Serum stability of both radiometal complexes was investigated and the [111In]In(decaox) complex remained 91% intact after 24 hours while the [89Zr]Zr(decaox) complex was 86% intact over the same time, comparable to other chelating ligands previously assessed with the same methods. The high radiolabeling yields, limited serum protein transchelation and structural insight of the [89Zr]Zr(decaox) complex suggest a promising fit between the oxinate-containing ligand and the Zr4+ ion, setting the stage for further investigations with a functionalised version of the chelator for its potential in PET imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA