Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 108(4): 042501, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22400828

RESUMEN

Evidence for the neutron-rich hypernucleus (Λ)(6)H is presented from the FINUDA experiment at DAΦNE, Frascati, studying (π+,π-) pairs in coincidence from the K(stop)(-) + (6)Li →(Λ)(6)H + π+ production reaction followed by (Λ)(6)H → (6)He + π- weak decay. The production rate of (Λ)(6) undergoing this two-body π- decay is determined to be (2.9 ± 2.0) × 10(-6)/K(stop)(-). Its binding energy, evaluated jointly from production and decay, is BΛ((Λ)(6)H) = (4.0 ± 1.1) MeV with respect to (5)H+Λ. A systematic difference of (0.98 ± 0.74) MeV between BΛ values derived separately from decay and from production is tentatively assigned to the (Λ)(6)H 0(g.s.)(+) → 1+ excitation.

2.
Phys Med Biol ; 64(3): 035001, 2019 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-30572320

RESUMEN

Positron emission tomography is one of the most mature techniques for monitoring the particles range in hadron therapy, aiming to reduce treatment uncertainties and therefore the extent of safety margins in the treatment plan. In-beam PET monitoring has been already performed using inter-spill and post-irradiation data, i.e. while the particle beam is off or paused. The full beam acquisition procedure is commonly discarded because the particle spills abruptly increase the random coincidence rates and therefore the image noise. This is because random coincidences cannot be separated by annihilation photons originating from radioactive decays and cannot be corrected with standard random coincidence techniques due to the time correlation of the beam-induced background with the ion beam microstructure. The aim of this paper is to provide a new method to recover in-spill data to improve the images obtained with full-beam PET acquisitions. This is done by estimating the temporal microstructure of the beam and thus selecting input PET events that are less likely to be random ones. The PET detector we used was the one developed within the INSIDE project and tested at the CNAO synchrotron-based facility. The data were taken on a PMMA phantom irradiated with 72 MeV proton pencil beams. The obtained results confirm the possibility of improving the acquired PET data without any external signal coming from the synchrotron or ad hoc detectors.


Asunto(s)
Tomografía de Emisión de Positrones , Terapia de Protones/métodos , Radioterapia Guiada por Imagen/métodos , Humanos , Procesamiento de Imagen Asistido por Computador , Terapia de Protones/instrumentación , Planificación de la Radioterapia Asistida por Computador , Radioterapia Guiada por Imagen/instrumentación , Seguridad , Sincrotrones , Incertidumbre
3.
Phys Med ; 51: 71-80, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29747928

RESUMEN

Hadrontherapy is a method for treating cancer with very targeted dose distributions and enhanced radiobiological effects. To fully exploit these advantages, in vivo range monitoring systems are required. These devices measure, preferably during the treatment, the secondary radiation generated by the beam-tissue interactions. However, since correlation of the secondary radiation distribution with the dose is not straightforward, Monte Carlo (MC) simulations are very important for treatment quality assessment. The INSIDE project constructed an in-beam PET scanner to detect signals generated by the positron-emitting isotopes resulting from projectile-target fragmentation. In addition, a FLUKA-based simulation tool was developed to predict the corresponding reference PET images using a detailed scanner model. The INSIDE in-beam PET was used to monitor two consecutive proton treatment sessions on a patient at the Italian Center for Oncological Hadrontherapy (CNAO). The reconstructed PET images were updated every 10 s providing a near real-time quality assessment. By half-way through the treatment, the statistics of the measured PET images were already significant enough to be compared with the simulations with average differences in the activity range less than 2.5 mm along the beam direction. Without taking into account any preferential direction, differences within 1 mm were found. In this paper, the INSIDE MC simulation tool is described and the results of the first in vivo agreement evaluation are reported. These results have justified a clinical trial, in which the MC simulation tool will be used on a daily basis to study the compliance tolerances between the measured and simulated PET images.


Asunto(s)
Método de Montecarlo , Planificación de la Radioterapia Asistida por Computador , Humanos , Imagenología Tridimensional , Tomografía de Emisión de Positrones
4.
Phys Med Biol ; 61(23): N650-N666, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27819254

RESUMEN

Treatment quality assessment is a crucial feature for both present and next-generation ion therapy facilities. Several approaches are being explored, based on prompt radiation emission or on PET signals by [Formula: see text]-decaying isotopes generated by beam interactions with the body. In-beam PET monitoring at synchrotron-based ion therapy facilities has already been performed, either based on inter-spill data only, to avoid the influence of the prompt radiation, or including both in-spill and inter-spill data. However, the PET images either suffer of poor statistics (inter-spill) or are more influenced by the background induced by prompt radiation (in-spill). Both those problems are expected to worsen for accelerators with improved duty cycle where the inter-spill interval is reduced to shorten the treatment time. With the aim of assessing the detector performance and developing techniques for background reduction, a test of an in-beam PET detector prototype was performed at the CNAO synchrotron-based ion therapy facility in full-beam acquisition modality. Data taken with proton beams impinging on PMMA phantoms showed the system acquisition capability and the resulting activity distribution, separately reconstructed for the in-spill and the inter-spill data. The coincidence time resolution for in-spill and inter-spill data shows a good agreement, with a slight deterioration during the spill. The data selection technique allows the identification and rejection of most of the background originated during the beam delivery. The activity range difference between two different proton beam energies (68 and 72 MeV) was measured and found to be in sub-millimeter agreement with the expected result. However, a slightly longer (2 mm) absolute profile length is obtained for in-spill data when compared to inter-spill data.


Asunto(s)
Fantasmas de Imagen , Tomografía de Emisión de Positrones/instrumentación , Terapia de Protones/instrumentación , Sincrotrones/instrumentación , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
5.
Phys Rev Lett ; 94(21): 212303, 2005 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-16090313

RESUMEN

We have searched for a deeply bound kaonic state by using the FINUDA spectrometer installed at the e(+)e(-) collider DAPhiNE. Almost monochromatic K(-)'s produced through the decay of phi(1020) mesons are used to observe K(-) absorption reactions stopped on very thin nuclear targets. Taking this unique advantage, we have succeeded to detect a kaon-bound state K(-)pp through its two-body decay into a Lambda hyperon and a proton. The binding energy and the decay width are determined from the invariant-mass distribution as 115(+6)(-5)(stat)(+3)(-4)(syst) MeV and 67(+14)(-11)(stat)(+2)(-3)(syst) MeV, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA