Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(29): 20279-20290, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38978206

RESUMEN

Pendent metals bound to heterocubanes are components of well-known active sites in enzymes that mediate difficult chemical transformations. Investigations into the specific role of these metal ions, sometimes referred to as "danglers", have been hindered by a paucity of rational synthetic routes to appropriate model structures. To generate pendent metal ions bonded to an oxo cubane through a carboxylate bridge, the cubane Co4(µ3-O)4(OAc)4(t-Bupy)4 (OAc = acetate, t-Bupy = 4-tert-butylpyridine) was exposed to various metal acetate complexes. Reaction with Cu(OAc)2 gave the structurally characterized (by X-ray diffraction) dicopper dangler Cu2Co4(µ4-O)2(µ3-O)2(OAc)6(Cl)2(t-Bupy)4. In contrast, the analogous reaction with Mn(OAc)2 produced the MnIV-containing cubane cation [MnCo3(µ3-O)4(OAc)4(t-Bupy)4]+ by way of a metal-metal exchange that gives Co(OAc)2 and [CoIII(µ-OH)(OAc)]n oligomers as byproducts. Additionally, reaction of the formally CoIV cubane complex [Co4(µ3-O)4(OAc)4(t-Bupy)4][PF6] with Mn(OAc)2 gave the corresponding Mn-containing cubane in 80% yield. A mechanistic examination of the related metal-metal exchange reaction between Co4(µ3-O)4(OBz)4(py)4 (OBz = benzoate) and [Mn(acac)2(py)2][PF6] by ultraviolet-visible (UV-vis) spectroscopy provided support for a process involving rate-determining association of the reactants and electron transfer through a µ-oxo bridge in the adduct intermediate. The rates of exchange correlate with the donor strength of the cubane pyridine and benzoate ligand substituents; more electron-donating pyridine ligands accelerate metal-metal exchange, while both electron-donating and -withdrawing benzoate ligands can accelerate exchange. These experiments suggest that the basicity of the cubane oxo ligands promotes metal-metal exchange reactivity. The redox potentials of the Mn and cubane starting materials and isotopic labeling studies suggest an inner-sphere electron-transfer mechanism in a dangler intermediate.

2.
J Am Chem Soc ; 146(7): 4369-4374, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38335065

RESUMEN

Reaction of the ruthenium carbene complex Cp*(IPr)RuCl (1) (IPr = 1,3-bis(Dipp)imidazol-2-ylidene; Dipp = 2,6-diisopropylphenyl) with sodium phosphaethynolate (NaOCP) led to intramolecular dearomatization of one of the Dipp substituents on the Ru-bound carbene to afford a Ru-bound phosphanorcaradiene, 2. Computations by DFT reveal a transition state characterized by a concerted process whereby CO migrates to the Ru center as the P atom adds to the π system of the aryl group. The phosphanorcaradiene possesses ambiphilic properties and reacts with both nucleophilic and electrophilic substrates, resulting in rearomatization of the ligand aryl group with net P atom transfer to give several unusual metal-bound, P-containing main-group moieties. These new complexes include a metallo-1-phospha-3-azaallene (Ru─P═C═NR), a metalloiminophosphanide (Ru─P═N─R), and a metallophosphaformazan (Ru─P(═N─N═CPh2)2). Reaction of 2 with the carbene 2,3,4,5-tetramethylimidazol-2-ylidene (IMe4) produced the corresponding phosphaalkene DippP═IMe4.

3.
ACS Catal ; 10(22): 13504-13517, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34327040

RESUMEN

The rational design of catalysts remains a challenging endeavor within the broader chemical community owing to the myriad variables that can affect key bond-forming events. Designing selective catalysts for any reaction requires an efficient strategy for discovering predictive structure-activity relationships. Herein, we describe the use of iterative supervised principal component analysis (ISPCA) in de novo catalyst design. The regioselective synthesis of 2,5-dimethyl-1,3,4-triphenyl-1H-pyrrole (C) via a Ti-catalyzed formal [2 + 2 +1] cycloaddition of phenylpropyne and azobenzene was targeted as a proof of principle. The initial reaction conditions led to an unselective mixture of all possible pyrrole regioisomers. ISPCA was conducted on a training set of catalysts, and their performance was regressed against the scores from the top three principal components. Component loadings from this PCA space and k-means clustering were used to inform the design of new test catalysts. The selectivity of a prospective test set was predicted in silico using the ISPCA model, and optimal candidates were synthesized and tested experimentally. This data-driven predictive-modeling workflow was iterated, and after only three generations the catalytic selectivity was improved from 0.5 (statistical mixture of products) to over 11 (>90% C) by incorporating 2,6-dimethyl-4-(pyrrolidin-1-yl)pyridine as a ligand. The origin of catalyst selectivity was probed by examining ISPCA variable loadings in combination with DFT modeling, revealing that ligand lability plays an important role in selectivity. A parallel catalyst search using multivariate linear regression (MLR), a popular approach in catalysis informatics, was also conducted in order to compare these strategies in a hypothetical catalyst scouting campaign. ISPCA appears to be more robust and predictive than MLR when sparse training sets are used that are representative of the data available during the early search for an optimal catalyst. The successful development of a highly selective catalyst without resorting to long, stochastic screening processes demonstrates the inherent power of ISPCA in de novo catalyst design and should motivate the general use of ISPCA in reaction development.

4.
Chem Sci ; 11(27): 7204-7209, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34123005

RESUMEN

The ring-opening oxidative amination of methylenecyclopropanes (MCPs) with diazenes catalyzed by py3TiCl2(NR) complexes is reported. This reaction selectively generates branched α-methylene imines as opposed to linear α,ß-unsaturated imines, which are difficult to access via other methods. Products can be isolated as the imine or hydrolyzed to the corresponding ketone in good yields. Mechanistic investigation via density functional theory suggests that the regioselectivity of these products results from a Curtin-Hammett kinetic scenario, where reversible ß-carbon elimination of a spirocyclic [2 + 2] azatitanacyclobutene intermediate is followed by selectivity-determining ß-hydrogen elimination of the resulting metallacycle. Further functionalizations of these branched α-methylene imine products are explored, demonstrating their utility as building blocks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA