Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Anal Chem ; 86(11): 5416-24, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24786229

RESUMEN

A high-throughput screening assay on a microfluidic chip was developed for the determination of charge variants of monocolonal antibodies (mAbs) in pI range of 7-10. This method utilizes microchip zone electrophoresis for rapid separation (<90 s) of mAb charge variants that are labeled fluorescently without altering the overall charge. The microfluidic assay achieves between 8- and 90-fold times faster separation time over conventional methods while maintaining comparable resolution and profiles of charge variant distributions. We further characterized the assay with respect to (i) the effect of pH on resolution, (ii) the effect of excipients and buffering agents, (iii) the performance of the assay compared to conventional methods, and (vi) the reproducibility of charge variant profiles. Finally, we explored the utility of the assay with four case studies: (i) monitoring C-terminal lysine modification of a mAb, (ii) quantifying the extent of deamidation of a mAb, (iii) providing charge variant information on which to base clone selection, and (iv) making process parameter-related decisions from a "design of experiment" (DoE) study. The results of these case studies demonstrate the applicability of the microfluidic assay for high-throughput monitoring of mAb quality in process development of biopharmaceuticals.


Asunto(s)
Anticuerpos Monoclonales/química , Electroforesis por Microchip/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Amidas/química , Biofarmacia , Tampones (Química) , Electroquímica , Colorantes Fluorescentes , Humanos , Concentración de Iones de Hidrógeno , Lisina/química , Técnicas Analíticas Microfluídicas , Reproducibilidad de los Resultados
2.
Nature ; 455(7210): 208-12, 2008 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-18784721

RESUMEN

Plant scientists believe that transpiration-the motion of water from the soil, through a vascular plant, and into the air-occurs by a passive, wicking mechanism. This mechanism is described by the cohesion-tension theory: loss of water by evaporation reduces the pressure of the liquid water within the leaf relative to atmospheric pressure; this reduced pressure pulls liquid water out of the soil and up the xylem to maintain hydration. Strikingly, the absolute pressure of the water within the xylem is often negative, such that the liquid is under tension and is thermodynamically metastable with respect to the vapour phase. Qualitatively, this mechanism is the same as that which drives fluid through the synthetic wicks that are key elements in technologies for heat transfer, fuel cells and portable chemical systems. Quantitatively, the differences in pressure generated in plants to drive flow can be more than a hundredfold larger than those generated in synthetic wicks. Here we present the design and operation of a microfluidic system formed in a synthetic hydrogel. This synthetic 'tree' captures the main attributes of transpiration in plants: transduction of subsaturation in the vapour phase of water into negative pressures in the liquid phase, stabilization and flow of liquid water at large negative pressures (-1.0 MPa or lower), continuous heat transfer with the evaporation of liquid water at negative pressure, and continuous extraction of liquid water from subsaturated sources. This development opens the opportunity for technological uses of water under tension and for new experimental studies of the liquid state of water.


Asunto(s)
Materiales Biomiméticos/química , Hidrogeles/química , Modelos Biológicos , Transpiración de Plantas/fisiología , Árboles , Agua/metabolismo , Transporte Biológico , Metacrilatos/química , Microfluídica , Hojas de la Planta , Raíces de Plantas , Presión , Volatilización
3.
Lab Chip ; 10(24): 3387-96, 2010 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-20941431

RESUMEN

Radiometal-based radiopharmaceuticals, used as imaging and therapeutic agents in nuclear medicine, consist of a radiometal that is bound to a targeting biomolecule (BM) using a bifunctional chelator (BFC). Conventional, macroscale radiolabeling methods use an excess of the BFC-BM conjugate (ligand) to achieve high radiolabeling yields. Subsequently, to achieve maximal specific activity (minimal amount of unlabeled ligand), extensive chromatographic purification is required to remove unlabeled ligand, often resulting in longer synthesis times and loss of imaging sensitivity due to radioactive decay. Here we describe a microreactor that overcomes the above issues through integration of efficient mixing and heating strategies while working with small volumes of concentrated reagents. As a model reaction, we radiolabel 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) conjugated to the peptide cyclo(Arg-Gly-Asp-DPhe-Lys) with (64)Cu(2+). We show that the microreactor (made from polydimethylsiloxane and glass) can withstand 260 mCi of activity over 720 hours and retains only minimal amounts of (64)Cu(2+) (<5%) upon repeated use. A direct comparison between the radiolabeling yields obtained using the microreactor and conventional radiolabeling methods shows that improved mixing and heat transfer in the microreactor leads to higher yields for identical reaction conditions. Most importantly, by using small volumes (~10 µL) of concentrated solutions of reagents (>50 µM), yields of over 90% can be achieved in the microreactor when using a 1:1 stoichiometry of radiometal to BFC-BM. These high yields eliminate the need for use of excess amounts of often precious BM and obviate the need for a chromatographic purification process to remove unlabeled ligand. The results reported here demonstrate the potential of microreactor technology to improve the production of patient-tailored doses of radiometal-based radiopharmaceuticals in the clinic.


Asunto(s)
Metales/química , Análisis por Micromatrices/métodos , Técnicas Analíticas Microfluídicas , Biomarcadores de Tumor , Cobre/química , Diseño de Equipo , Compuestos Heterocíclicos con 1 Anillo/química , Humanos , Ligandos , Ensayo de Materiales , Modelos Químicos , Medicina Nuclear , Sodio/química , Temperatura
4.
Nat Commun ; 8: 14049, 2017 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-28091601

RESUMEN

Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3' mRNA counting of tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time, takes place in ∼6 min, with ∼50% cell capture efficiency. To demonstrate the system's technical performance, we collected transcriptome data from ∼250k single cells across 29 samples. We validated the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear cells to demonstrate the system's ability to characterize large immune populations. Finally, we used sequence variation in the transcriptome data to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients.


Asunto(s)
Leucocitos Mononucleares/metabolismo , Transcriptoma , Línea Celular , Femenino , Humanos , Leucocitos Mononucleares/química , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de la Célula Individual
5.
Adv Healthc Mater ; 3(3): 449-58, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23997020

RESUMEN

The bone marrow provides spatially and temporally variable signals that impact the behavior of hematopoietic stem cells (HSCs). While multiple biomolecular signals and bone marrow cell populations have been proposed as key regulators of HSC fate, new tools are required to probe their importance and mechanisms of action. Here, a novel method based on a microfluidic mixing platform to create small volume, 3D hydrogel constructs containing overlapping patterns of cell and matrix constituents inspired by the HSC niche is described. This approach is used to generate hydrogels containing opposing gradients of fluorescent microspheres, MC3T3-E1 osteoblasts, primary murine hematopoietic stem and progenitor cells (HSPCs), and combinations thereof in a manner independent of hydrogel density and cell/particle size. Three different analytical methods are described to characterize local properties of these hydrogels at multiple scales: 1) whole construct fluorescent analysis; 2) multi-photon imaging of individual cells within the construct; 3) retrieval of discrete sub-regions from the hydrogel post-culture. The approach reported here allows the creation of stable gradients of cell and material cues within a single, optically translucent 3D biomaterial to enable a range of investigations regarding how microenvironmental signals impact cell fate.


Asunto(s)
Células Madre Hematopoyéticas/efectos de los fármacos , Hidrogeles/química , Microfluídica/métodos , Células 3T3 , Animales , Materiales Biocompatibles/química , Supervivencia Celular/efectos de los fármacos , Femenino , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Osteoblastos/citología , Osteoblastos/efectos de los fármacos
6.
Nucl Med Biol ; 40(1): 42-51, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23078875

RESUMEN

INTRODUCTION: A robust, versatile and compact microreactor has been designed, fabricated and tested for the labeling of bifunctional chelate conjugated biomolecules (BFC-BM) with PET radiometals. METHODS: The developed microreactor was used to radiolabel a chelate, either 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) that had been conjugated to cyclo(Arg-Gly-Asp-DPhe-Lys) peptide, with both 64Cu and 68Ga respectively. The microreactor radiolabeling conditions were optimized by varying temperature, concentration and residence time. RESULTS: Direct comparisons between the microreactor approach and conventional methods showed improved labeling yields and increased reproducibility with the microreactor under identical labeling conditions, due to enhanced mass and heat transfer at the microscale. More importantly, over 90% radiolabeling yields (incorporation of radiometal) were achieved with a 1:1 stoichiometry of bifunctional chelate biomolecule conjugate (BFC-BM) to radiometal in the microreactor, which potentially obviates extensive chromatographic purification that is typically required to remove the large excess of unlabeled biomolecule in radioligands prepared using conventional methods. Moreover, higher yields for radiolabeling of DOTA-functionalized BSA protein (Bovine Serum Albumin) were observed with 64Cu/68Ga using the microreactor, which demonstrates the ability to label both small and large molecules. CONCLUSIONS: A robust, reliable, compact microreactor capable of chelating radiometals with common chelates has been developed and validated. Based on our radiolabeling results, the reported microfluidic approach overall outperforms conventional radiosynthetic methods, and is a promising technology for the radiometal labeling of commonly utilized BFC-BM in aqueous solutions.


Asunto(s)
Radioisótopos de Cobre/química , Marcaje Isotópico/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Tomografía de Emisión de Positrones , Dimetilpolisiloxanos/química , Radioisótopos de Galio/química , Vidrio/química , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos con 1 Anillo/química , Oligopéptidos/química , Temperatura , Factores de Tiempo
8.
Langmuir ; 25(13): 7609-22, 2009 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-19466810

RESUMEN

A pure liquid can reach metastable equilibrium with its subsaturated vapor across an appropriate membrane. This situation is analogous to osmotic equilibrium: the reduced chemical potential of the dilute phase (the subsaturated vapor) is compensated by a difference in pressure between the phases. To equilibrate with subsaturated vapor, the liquid phase assumes a pressure that is lower than its standard vapor pressure, such that the liquid phase is metastable with respect to the vapor phase. For sufficiently subsaturated vapors, the liquid phase can even assume negative pressures. The appropriate membrane for this metastable equilibrium must provide the necessary mechanical support to sustain the difference in pressure between the two phases, limit nonhomogeneous mechanisms of cavitation, and resist the entry of the dilutant (gases) into the pure phase (liquid). In this article, we present a study of the limit of stability of liquid water--the degree of subsaturation at which the liquid cavitates--in this metastable state within microscale voids embedded in hydrogel membranes. We refer to these structures as vapor-coupled voids (VCVs). In these VCVs, we observed that liquid water cavitated when placed in equilibrium with vapors of activity aw,vapair

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA