Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(16): e2322924121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38607933

RESUMEN

Many Mendelian disorders, such as Huntington's disease (HD) and spinocerebellar ataxias, arise from expansions of CAG trinucleotide repeats. Despite the clear genetic causes, additional genetic factors may influence the rate of those monogenic disorders. Notably, genome-wide association studies discovered somewhat expected modifiers, particularly mismatch repair genes involved in the CAG repeat instability, impacting age at onset of HD. Strikingly, FAN1, previously unrelated to repeat instability, produced the strongest HD modification signals. Diverse FAN1 haplotypes independently modify HD, with rare genetic variants diminishing DNA binding or nuclease activity of the FAN1 protein, hastening HD onset. However, the mechanism behind the frequent and the most significant onset-delaying FAN1 haplotype lacking missense variations has remained elusive. Here, we illustrated that a microRNA acting on 3'-UTR (untranslated region) SNP rs3512, rather than transcriptional regulation, is responsible for the significant FAN1 expression quantitative trait loci signal and allelic imbalance in FAN1 messenger ribonucleic acid (mRNA), accounting for the most significant and frequent onset-delaying modifier haplotype in HD. Specifically, miR-124-3p selectively targets the reference allele at rs3512, diminishing the stability of FAN1 mRNA harboring that allele and consequently reducing its levels. Subsequent validation analyses, including the use of antagomir and 3'-UTR reporter vectors with swapped alleles, confirmed the specificity of miR-124-3p at rs3512. Together, these findings indicate that the alternative allele at rs3512 renders the FAN1 mRNA less susceptible to miR-124-3p-mediated posttranscriptional regulation, resulting in increased FAN1 levels and a subsequent delay in HD onset by mitigating CAG repeat instability.


Asunto(s)
Enfermedad de Huntington , MicroARNs , Humanos , Regiones no Traducidas 3'/genética , Endodesoxirribonucleasas , Exodesoxirribonucleasas/genética , Estudio de Asociación del Genoma Completo , Enfermedad de Huntington/genética , MicroARNs/genética , Enzimas Multifuncionales
2.
PLoS Genet ; 19(10): e1010988, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37831730

RESUMEN

Alternative splicing (AS) appears to be altered in Huntington's disease (HD), but its significance for early, pre-symptomatic disease stages has not been inspected. Here, taking advantage of Htt CAG knock-in mouse in vitro and in vivo models, we demonstrate a correlation between Htt CAG repeat length and increased aberrant linear AS, specifically affecting neural progenitors and, in vivo, the striatum prior to overt behavioral phenotypes stages. Remarkably, a significant proportion (36%) of the aberrantly spliced isoforms are not-functional and meant to non-sense mediated decay (NMD). The expanded Htt CAG repeats further reflect on a previously neglected, global impairment of back-splicing, leading to decreased circular RNAs production in neural progenitors. Integrative transcriptomic analyses unveil a network of transcriptionally altered micro-RNAs and RNA-binding proteins (Celf, hnRNPs, Ptbp, Srsf, Upf1, Ythd2) which might influence the AS machinery, primarily in neural cells. We suggest that this unbalanced expression of linear and circular RNAs might alter neural fitness, contributing to HD pathogenesis.


Asunto(s)
Enfermedad de Huntington , Ratones , Animales , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , ARN Circular/genética , Empalme del ARN , Empalme Alternativo/genética , Perfilación de la Expresión Génica , Expansión de Repetición de Trinucleótido/genética , Proteína Huntingtina/genética
3.
Am J Hum Genet ; 109(5): 885-899, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35325614

RESUMEN

Genome-wide association studies (GWASs) of Huntington disease (HD) have identified six DNA maintenance gene loci (among others) as modifiers and implicated a two step-mechanism of pathogenesis: somatic instability of the causative HTT CAG repeat with subsequent triggering of neuronal damage. The largest studies have been limited to HD individuals with a rater-estimated age at motor onset. To capitalize on the wealth of phenotypic data in several large HD natural history studies, we have performed algorithmic prediction by using common motor and cognitive measures to predict age at other disease landmarks as additional phenotypes for GWASs. Combined with imputation with the Trans-Omics for Precision Medicine reference panel, predictions using integrated measures provided objective landmark phenotypes with greater power to detect most modifier loci. Importantly, substantial differences in the relative modifier signal across loci, highlighted by comparing common modifiers at MSH3 and FAN1, revealed that individual modifier effects can act preferentially in the motor or cognitive domains. Individual components of the DNA maintenance modifier mechanisms may therefore act differentially on the neuronal circuits underlying the corresponding clinical measures. In addition, we identified additional modifier effects at the PMS1 and PMS2 loci and implicated a potential second locus on chromosome 7. These findings indicate that broadened discovery and characterization of HD genetic modifiers based on additional quantitative or qualitative phenotypes offers not only the promise of in-human validated therapeutic targets but also a route to dissecting the mechanisms and cell types involved in both the somatic instability and toxicity components of HD pathogenesis.


Asunto(s)
Enfermedad de Huntington , Cognición , ADN , Estudio de Asociación del Genoma Completo , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Expansión de Repetición de Trinucleótido
4.
Nucleic Acids Res ; 49(7): 3907-3918, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33751106

RESUMEN

Somatic expansion of the CAG repeat tract that causes Huntington's disease (HD) is thought to contribute to the rate of disease pathogenesis. Therefore, factors influencing repeat expansion are potential therapeutic targets. Genes in the DNA mismatch repair pathway are critical drivers of somatic expansion in HD mouse models. Here, we have tested, using genetic and pharmacological approaches, the role of the endonuclease domain of the mismatch repair protein MLH3 in somatic CAG expansion in HD mice and patient cells. A point mutation in the MLH3 endonuclease domain completely eliminated CAG expansion in the brain and peripheral tissues of a HD knock-in mouse model (HttQ111). To test whether the MLH3 endonuclease could be manipulated pharmacologically, we delivered splice switching oligonucleotides in mice to redirect Mlh3 splicing to exclude the endonuclease domain. Splice redirection to an isoform lacking the endonuclease domain was associated with reduced CAG expansion. Finally, CAG expansion in HD patient-derived primary fibroblasts was also significantly reduced by redirecting MLH3 splicing to the endogenous endonuclease domain-lacking isoform. These data indicate the potential of targeting the MLH3 endonuclease domain to slow somatic CAG repeat expansion in HD, a therapeutic strategy that may be applicable across multiple repeat expansion disorders.


Asunto(s)
Reparación del ADN , Endonucleasas , Enfermedad de Huntington/genética , Proteínas MutL , Empalme de Proteína , Expansión de Repetición de Trinucleótido , Animales , Células Cultivadas , Endonucleasas/fisiología , Femenino , Fibroblastos , Técnicas de Sustitución del Gen , Inestabilidad Genómica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas MutL/fisiología , Oligonucleótidos
5.
Hum Mol Genet ; 29(18): 3044-3053, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32876667

RESUMEN

Recent genome-wide association studies of age-at-onset in Huntington's disease (HD) point to distinct modes of potential disease modification: altering the rate of somatic expansion of the HTT CAG repeat or altering the resulting CAG threshold length-triggered toxicity process. Here, we evaluated the mouse orthologs of two HD age-at-onset modifier genes, FAN1 and RRM2B, for an influence on somatic instability of the expanded CAG repeat in Htt CAG knock-in mice. Fan1 knock-out increased somatic expansion of Htt CAG repeats, in the juvenile- and the adult-onset HD ranges, whereas knock-out of Rrm2b did not greatly alter somatic Htt CAG repeat instability. Simultaneous knock-out of Mlh1, the ortholog of a third HD age-at-onset modifier gene (MLH1), which suppresses somatic expansion of the Htt knock-in CAG repeat, blocked the Fan1 knock-out-induced acceleration of somatic CAG expansion. This genetic interaction indicates that functional MLH1 is required for the CAG repeat destabilizing effect of FAN1 loss. Thus, in HD, it is uncertain whether the RRM2B modifier effect on timing of onset may be due to a DNA instability mechanism. In contrast, the FAN1 modifier effects reveal that functional FAN1 acts to suppress somatic CAG repeat expansion, likely in genetic interaction with other DNA instability modifiers whose combined effects can hasten or delay onset and other CAG repeat length-driven phenotypes.


Asunto(s)
Proteínas de Ciclo Celular/genética , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Enzimas Multifuncionales/genética , Homólogo 1 de la Proteína MutL/genética , Ribonucleótido Reductasas/genética , Edad de Inicio , Animales , Modelos Animales de Enfermedad , Genes Modificadores/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Enfermedad de Huntington/patología , Ratones , Ratones Noqueados , Fenotipo , Expansión de Repetición de Trinucleótido/genética
6.
Hum Mol Genet ; 29(15): 2551-2567, 2020 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-32761094

RESUMEN

The expanded HTT CAG repeat causing Huntington's disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a pathological process that ultimately claims vulnerable cells. To gain insight into somatic expansion in humans, we performed comprehensive quantitative analyses of CAG expansion in ~50 central nervous system (CNS) and peripheral postmortem tissues from seven adult-onset and one juvenile-onset HD individual. We also assessed ATXN1 CAG repeat expansion in brain regions of an individual with a neurologically and pathologically distinct repeat expansion disorder, spinocerebellar ataxia type 1 (SCA1). Our findings reveal similar profiles of tissue instability in all HD individuals, which, notably, were also apparent in the SCA1 individual. CAG expansion was observed in all tissues, but to different degrees, with multiple cortical regions and neostriatum tending to have the greatest instability in the CNS, and liver in the periphery. These patterns indicate different propensities for CAG expansion contributed by disease locus-independent trans-factors and demonstrate that expansion per se is not sufficient to cause cell type or disease-specific pathology. Rather, pathology may reflect distinct toxic processes triggered by different repeat lengths across cell types and diseases. We also find that the HTT CAG length-dependent expansion propensity of an individual is reflected in all tissues and in cerebrospinal fluid. Our data indicate that peripheral cells may be a useful source to measure CAG expansion in biomarker assays for therapeutic efforts, prompting efforts to dissect underlying mechanisms of expansion that may differ between the brain and periphery.


Asunto(s)
Enfermedad de Huntington/genética , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido/genética , Repeticiones de Trinucleótidos/genética , Adulto , Anciano , Autopsia , Sistema Nervioso Central/patología , Niño , Femenino , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/patología , Masculino , Persona de Mediana Edad , Neostriado/diagnóstico por imagen , Neostriado/metabolismo , Neostriado/patología , Ataxias Espinocerebelosas/diagnóstico por imagen , Ataxias Espinocerebelosas/patología
7.
PLoS Genet ; 14(5): e1007274, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29750799

RESUMEN

Modifiers of Mendelian disorders can provide insights into disease mechanisms and guide therapeutic strategies. A recent genome-wide association (GWA) study discovered genetic modifiers of Huntington's disease (HD) onset in Europeans. Here, we performed whole genome sequencing and GWA analysis of a Venezuelan HD cluster whose families were crucial for the original mapping of the HD gene defect. The Venezuelan HD subjects develop motor symptoms earlier than their European counterparts, implying the potential for population-specific modifiers. The main Venezuelan HD family inherits HTT haplotype hap.03, which differs subtly at the sequence level from European HD hap.03, suggesting a different ancestral origin but not explaining the earlier age at onset in these Venezuelans. GWA analysis of the Venezuelan HD cluster suggests both population-specific and population-shared genetic modifiers. Genome-wide significant signals at 7p21.2-21.1 and suggestive association signals at 4p14 and 17q21.2 are evident only in Venezuelan HD, but genome-wide significant association signals at the established European chromosome 15 modifier locus are improved when Venezuelan HD data are included in the meta-analysis. Venezuelan-specific association signals on chromosome 7 center on SOSTDC1, which encodes a bone morphogenetic protein antagonist. The corresponding SNPs are associated with reduced expression of SOSTDC1 in non-Venezuelan tissue samples, suggesting that interaction of reduced SOSTDC1 expression with a population-specific genetic or environmental factor may be responsible for modification of HD onset in Venezuela. Detection of population-specific modification in Venezuelan HD supports the value of distinct disease populations in revealing novel aspects of a disease and population-relevant therapeutic strategies.


Asunto(s)
Genes Modificadores/genética , Estudio de Asociación del Genoma Completo/métodos , Enfermedad de Huntington/genética , Secuenciación Completa del Genoma/métodos , Proteínas Adaptadoras Transductoras de Señales , Edad de Inicio , Salud de la Familia , Femenino , Interacción Gen-Ambiente , Genética de Población , Haplotipos , Humanos , Proteína Huntingtina/genética , Péptidos y Proteínas de Señalización Intracelular , Masculino , Polimorfismo de Nucleótido Simple , Proteínas/genética , Venezuela
8.
Hum Mol Genet ; 26(19): 3859-3867, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28934397

RESUMEN

Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by an expanded CAG repeat in HTT. Many clinical characteristics of HD such as age at motor onset are determined largely by the size of HTT CAG repeat. However, emerging evidence strongly supports a role for other genetic factors in modifying the disease pathogenesis driven by mutant huntingtin. A recent genome-wide association analysis to discover genetic modifiers of HD onset age provided initial evidence for modifier loci on chromosomes 8 and 15 and suggestive evidence for a locus on chromosome 3. Here, genotyping of candidate single nucleotide polymorphisms in a cohort of 3,314 additional HD subjects yields independent confirmation of the former two loci and moves the third to genome-wide significance at MLH1, a locus whose mouse orthologue modifies CAG length-dependent phenotypes in a Htt-knock-in mouse model of HD. Both quantitative and dichotomous association analyses implicate a functional variant on ∼32% of chromosomes with the beneficial modifier effect that delays HD motor onset by 0.7 years/allele. Genomic DNA capture and sequencing of a modifier haplotype localize the functional variation to a 78 kb region spanning the 3'end of MLH1 and the 5'end of the neighboring LRRFIP2, and marked by an isoleucine-valine missense variant in MLH1. Analysis of expression Quantitative Trait Loci (eQTLs) provides modest support for altered regulation of MLH1 and LRRFIP2, raising the possibility that the modifier affects regulation of both genes. Finally, polygenic modification score and heritability analyses suggest the existence of additional genetic modifiers, supporting expanded, comprehensive genetic analysis of larger HD datasets.


Asunto(s)
Proteína Huntingtina/genética , Homólogo 1 de la Proteína MutL/genética , Alelos , Animales , Cromosomas Humanos Par 15 , Cromosomas Humanos Par 8 , Modelos Animales de Enfermedad , Genes Modificadores/genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Ratones , Homólogo 1 de la Proteína MutL/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Repeticiones de Trinucleótidos
9.
Hum Mol Genet ; 26(5): 913-922, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334820

RESUMEN

Huntington's disease is a dominantly inherited neurodegenerative disease caused by the expansion of a CAG repeat in the HTT gene. In addition to the length of the CAG expansion, factors such as genetic background have been shown to contribute to the age at onset of neurological symptoms. A central challenge in understanding the disease progression that leads from the HD mutation to massive cell death in the striatum is the ability to characterize the subtle and early functional consequences of the CAG expansion longitudinally. We used dense time course sampling between 4 and 20 postnatal weeks to characterize early transcriptomic, molecular and cellular phenotypes in the striatum of six distinct knock-in mouse models of the HD mutation. We studied the effects of the HttQ111 allele on the C57BL/6J, CD-1, FVB/NCr1, and 129S2/SvPasCrl genetic backgrounds, and of two additional alleles, HttQ92 and HttQ50, on the C57BL/6J background. We describe the emergence of a transcriptomic signature in HttQ111/+ mice involving hundreds of differentially expressed genes and changes in diverse molecular pathways. We also show that this time course spanned the onset of mutant huntingtin nuclear localization phenotypes and somatic CAG-length instability in the striatum. Genetic background strongly influenced the magnitude and age at onset of these effects. This work provides a foundation for understanding the earliest transcriptional and molecular changes contributing to HD pathogenesis.


Asunto(s)
Cuerpo Estriado/metabolismo , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Expansión de Repetición de Trinucleótido/genética , Animales , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Antecedentes Genéticos , Inestabilidad Genómica/genética , Humanos , Proteína Huntingtina/biosíntesis , Enfermedad de Huntington/patología , Ratones , Mutación/genética , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Transcriptoma/genética
10.
Mol Syst Biol ; 14(3): e7435, 2018 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-29581148

RESUMEN

Transcriptional changes occur presymptomatically and throughout Huntington's disease (HD), motivating the study of transcriptional regulatory networks (TRNs) in HD We reconstructed a genome-scale model for the target genes of 718 transcription factors (TFs) in the mouse striatum by integrating a model of genomic binding sites with transcriptome profiling of striatal tissue from HD mouse models. We identified 48 differentially expressed TF-target gene modules associated with age- and CAG repeat length-dependent gene expression changes in Htt CAG knock-in mouse striatum and replicated many of these associations in independent transcriptomic and proteomic datasets. Thirteen of 48 of these predicted TF-target gene modules were also differentially expressed in striatal tissue from human disease. We experimentally validated a specific model prediction that SMAD3 regulates HD-related gene expression changes using chromatin immunoprecipitation and deep sequencing (ChIP-seq) of mouse striatum. We found CAG repeat length-dependent changes in the genomic occupancy of SMAD3 and confirmed our model's prediction that many SMAD3 target genes are downregulated early in HD.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Enfermedad de Huntington/genética , Proteína smad3/genética , Animales , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Enfermedad de Huntington/metabolismo , Ratones , Mapas de Interacción de Proteínas , Proteómica , Proteína smad3/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Am J Hum Genet ; 94(6): 870-83, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24906019

RESUMEN

Reciprocal copy-number variation (CNV) of a 593 kb region of 16p11.2 is a common genetic cause of autism spectrum disorder (ASD), yet it is not completely penetrant and can manifest in a wide array of phenotypes. To explore its molecular consequences, we performed RNA sequencing of cerebral cortex from mouse models with CNV of the syntenic 7qF3 region and lymphoblast lines from 34 members of 7 multiplex ASD-affected families harboring the 16p11.2 CNV. Expression of all genes in the CNV region correlated well with their DNA copy number, with no evidence of dosage compensation. We observed effects on gene expression outside the CNV region, including apparent positional effects in cis and in trans at genomic segments with evidence of physical interaction in Hi-C chromosome conformation data. One of the most significant positional effects was telomeric to the 16p11.2 CNV and includes the previously described "distal" 16p11.2 microdeletion. Overall, 16p11.2 CNV was associated with altered expression of genes and networks that converge on multiple hypotheses of ASD pathogenesis, including synaptic function (e.g., NRXN1, NRXN3), chromatin modification (e.g., CHD8, EHMT1, MECP2), transcriptional regulation (e.g., TCF4, SATB2), and intellectual disability (e.g., FMR1, CEP290). However, there were differences between tissues and species, with the strongest effects being consistently within the CNV region itself. Our analyses suggest that through a combination of indirect regulatory effects and direct effects on nuclear architecture, alteration of 16p11.2 genes disrupts expression networks that involve other genes and pathways known to contribute to ASD, suggesting an overlap in mechanisms of pathogenesis.


Asunto(s)
Trastorno Autístico/genética , Deleción Cromosómica , Duplicación Cromosómica , Cromosomas Humanos Par 16/genética , Animales , Corteza Cerebral/patología , Niño , Variaciones en el Número de Copia de ADN , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Discapacidad Intelectual/genética , Masculino , Ratones , Linaje , Fenotipo , Análisis de Secuencia de ARN , Transcripción Genética
12.
PLoS Genet ; 9(10): e1003930, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24204323

RESUMEN

The Huntington's disease gene (HTT) CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease Hdh(Q111) mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.Hdh(Q111) ) than on a 129 background (129.Hdh(Q111) ). Linkage mapping in (B6x129).Hdh(Q111) F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR) gene Mlh1 as the most likely candidate modifier. Crossing B6.Hdh(Q111) mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. Hdh(Q111) somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1-MLH3) complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSß (MSH2-MSH3). The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest that MLH1 protein levels play an important role in driving of the efficiency of somatic expansions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Portadoras/genética , Enfermedad de Huntington/genética , Proteínas Nucleares/genética , Expansión de Repetición de Trinucleótido/genética , Animales , Modelos Animales de Enfermedad , Estudios de Asociación Genética , Estudio de Asociación del Genoma Completo , Inestabilidad Genómica , Humanos , Enfermedad de Huntington/patología , Ratones , Homólogo 1 de la Proteína MutL , Proteínas MutL , ARN Mensajero
13.
Hum Mol Genet ; 22(16): 3227-38, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23595883

RESUMEN

In Huntington's disease (HD), the size of the expanded HTT CAG repeat mutation is the primary driver of the processes that determine age at onset of motor symptoms. However, correlation of cellular biochemical parameters also extends across the normal repeat range, supporting the view that the CAG repeat represents a functional polymorphism with dominant effects determined by the longer allele. A central challenge to defining the functional consequences of this single polymorphism is the difficulty of distinguishing its subtle effects from the multitude of other sources of biological variation. We demonstrate that an analytical approach based upon continuous correlation with CAG size was able to capture the modest (∼21%) contribution of the repeat to the variation in genome-wide gene expression in 107 lymphoblastoid cell lines, with alleles ranging from 15 to 92 CAGs. Furthermore, a mathematical model from an iterative strategy yielded predicted CAG repeat lengths that were significantly positively correlated with true CAG allele size and negatively correlated with age at onset of motor symptoms. Genes negatively correlated with repeat size were also enriched in a set of genes whose expression were CAG-correlated in human HD cerebellum. These findings both reveal the relatively small, but detectable impact of variation in the CAG allele in global data in these peripheral cells and provide a strategy for building multi-dimensional data-driven models of the biological network that drives the HD disease process by continuous analysis across allelic panels of neuronal cells vulnerable to the dominant effects of the HTT CAG repeat.


Asunto(s)
Expresión Génica , Enfermedad de Huntington/genética , Proteínas del Tejido Nervioso/genética , Repeticiones de Trinucleótidos/genética , Edad de Inicio , Alelos , Línea Celular , Cerebelo/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Proteína Huntingtina , Enfermedad de Huntington/diagnóstico , Enfermedad de Huntington/metabolismo , Masculino , Modelos Genéticos , Polimorfismo Genético , Reproducibilidad de los Resultados , Transcriptoma
14.
Mamm Genome ; 26(3-4): 119-30, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25645993

RESUMEN

Huntington's disease (HD) is a dominant neurodegenerative disorder that is due to expansion of an unstable HTT CAG repeat for which genome-wide genetic scans are now revealing chromosome regions that contain disease-modifying genes. We have explored a novel human-mouse cross-species functional prioritisation approach, by evaluating the HD modifier 6q23-24 linkage interval. This unbiased strategy employs C57BL/6J (B6J) Hdh(Q111) knock-in mice, replicates of the HD mutation, and the C57BL/6J-chr10(A/J)/NaJ chromosome substitution strain (CSS10), in which only chromosome 10 (chr10), in synteny with the human 6q23-24 region, is derived from the A/J (AJ) strain. Crosses were performed to assess the possibility of dominantly acting chr10 AJ-B6J variants of strong effect that may modulate CAG-dependent Hdh(Q111/+) phenotypes. Testing of F1 progeny confirmed that a single AJ chromosome had a significant effect on the rate of body weight gain and in Hdh(Q111) mice the AJ chromosome was associated subtle alterations in somatic CAG instability in the liver and the formation of intra-nuclear inclusions, as well as DARPP-32 levels, in the striatum. These findings in relatively small cohorts are suggestive of dominant chr10 AJ-B6 variants that may modify effects of the CAG expansion, and encourage a larger study with CSS10 and sub-strains. This cross-species approach may therefore be suited to functional in vivo prioritisation of genomic regions harbouring genes that can modify the early effects of the HD mutation.


Asunto(s)
Cromosomas de los Mamíferos , Cruzamientos Genéticos , Enfermedad de Huntington/genética , Sitios de Carácter Cuantitativo , Alelos , Animales , Peso Corporal , Cromosomas Humanos , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Femenino , Técnicas de Sustitución del Gen , Variación Genética , Inestabilidad Genómica , Genotipo , Humanos , Proteína Huntingtina , Masculino , Ratones , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Fenotipo , Repeticiones de Trinucleótidos
15.
Elife ; 122024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869243

RESUMEN

An expanded CAG repeat in the huntingtin gene (HTT) causes Huntington's disease (HD). Since the length of uninterrupted CAG repeat, not polyglutamine, determines the age-at-onset in HD, base editing strategies to convert CAG to CAA are anticipated to delay onset by shortening the uninterrupted CAG repeat. Here, we developed base editing strategies to convert CAG in the repeat to CAA and determined their molecular outcomes and effects on relevant disease phenotypes. Base editing strategies employing combinations of cytosine base editors and guide RNAs (gRNAs) efficiently converted CAG to CAA at various sites in the CAG repeat without generating significant indels, off-target edits, or transcriptome alterations, demonstrating their feasibility and specificity. Candidate BE strategies converted CAG to CAA on both expanded and non-expanded CAG repeats without altering HTT mRNA and protein levels. In addition, somatic CAG repeat expansion, which is the major disease driver in HD, was significantly decreased in the liver by a candidate BE strategy treatment in HD knock-in mice carrying canonical CAG repeats. Notably, CAG repeat expansion was abolished entirely in HD knock-in mice carrying CAA-interrupted repeats, supporting the therapeutic potential of CAG-to-CAA conversion strategies in HD and potentially other repeat expansion disorders.


Asunto(s)
Edición Génica , Proteína Huntingtina , Enfermedad de Huntington , Expansión de Repetición de Trinucleótido , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Animales , Edición Génica/métodos , Ratones , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Expansión de Repetición de Trinucleótido/genética , Modelos Animales de Enfermedad , Humanos , Mutación , Técnicas de Sustitución del Gen
16.
J Huntingtons Dis ; 13(1): 33-40, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38393920

RESUMEN

Somatic instability of the huntingtin (HTT) CAG repeat mutation modifies age-at-onset of Huntington's disease (HD). Understanding the mechanism and pathogenic consequences of instability may reveal therapeutic targets. Using small-pool PCR we analyzed CAG instability in the OVT73 sheep model which expresses a full-length human cDNA HTT transgene. Analyses of five- and ten-year old sheep revealed the transgene (CAG)69 repeat was remarkably stable in liver, striatum, and other brain tissues. As OVT73 sheep at ten years old have minimal cell death and behavioral changes, our findings support instability of the HTT expanded-CAG repeat as being required for the progression of HD.


Asunto(s)
Enfermedad de Huntington , Animales , Ovinos/genética , Humanos , Niño , Preescolar , Enfermedad de Huntington/metabolismo , Cuerpo Estriado/metabolismo , Neostriado/metabolismo , Mutación , Edad de Inicio , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Expansión de Repetición de Trinucleótido/genética , Modelos Animales de Enfermedad
17.
bioRxiv ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38895438

RESUMEN

Huntington's disease (HD), one of >50 inherited repeat expansion disorders (Depienne and Mandel, 2021), is a dominantly-inherited neurodegenerative disease caused by a CAG expansion in HTT (The Huntington's Disease Collaborative Research Group, 1993). Inherited CAG repeat length is the primary determinant of age of onset, with human genetic studies underscoring that the property driving disease is the CAG length-dependent propensity of the repeat to further expand in brain (Swami et al ., 2009; GeM-HD, 2015; Hensman Moss et al ., 2017; Ciosi et al ., 2019; GeM-HD, 2019; Hong et al ., 2021). Routes to slowing somatic CAG expansion therefore hold great promise for disease-modifying therapies. Several DNA repair genes, notably in the mismatch repair (MMR) pathway, modify somatic expansion in HD mouse models (Wheeler and Dion, 2021). To identify novel modifiers of somatic expansion, we have used CRISPR-Cas9 editing in HD knock-in mice to enable in vivo screening of expansion-modifier candidates at scale. This has included testing of HD onset modifier genes emerging from human genome-wide association studies (GWAS), as well as interactions between modifier genes, thereby providing new insight into pathways underlying CAG expansion and potential therapeutic targets.

18.
Mol Ther Nucleic Acids ; 35(3): 102234, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38974999

RESUMEN

Circular RNA (circRNA) molecules have critical functions during brain development and in brain-related disorders. Here, we identified and validated a circRNA, circHTT(2,3,4,5,6), stemming from the Huntington's disease (HD) gene locus that is most abundant in the central nervous system (CNS). We uncovered its evolutionary conservation in diverse mammalian species, and a correlation between circHTT(2,3,4,5,6) levels and the length of the CAG-repeat tract in exon-1 of HTT in human and mouse HD model systems. The mouse orthologue, circHtt(2,3,4,5,6), is expressed during embryogenesis, increases during nervous system development, and is aberrantly upregulated in the presence of the expanded CAG tract. While an IRES-like motif was predicted in circH TT (2,3,4,5,6), the circRNA does not appear to be translated in adult mouse brain tissue. Nonetheless, a modest, but consistent fraction of circHtt(2,3,4,5,6) associates with the 40S ribosomal subunit, suggesting a possible role in the regulation of protein translation. Finally, circHtt(2,3,4,5,6) overexpression experiments in HD-relevant STHdh striatal cells revealed its ability to modulate CAG expansion-driven cellular defects in cell-to-substrate adhesion, thus uncovering an unconventional modifier of HD pathology.

19.
Nat Commun ; 15(1): 3182, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609352

RESUMEN

Huntington's disease (HD) is a dominant neurological disorder caused by an expanded HTT exon 1 CAG repeat that lengthens huntingtin's polyglutamine tract. Lowering mutant huntingtin has been proposed for treating HD, but genetic modifiers implicate somatic CAG repeat expansion as the driver of onset. We find that branaplam and risdiplam, small molecule splice modulators that lower huntingtin by promoting HTT pseudoexon inclusion, also decrease expansion of an unstable HTT exon 1 CAG repeat in an engineered cell model. Targeted CRISPR-Cas9 editing shows this effect is not due to huntingtin lowering, pointing instead to pseudoexon inclusion in PMS1. Homozygous but not heterozygous inactivation of PMS1 also reduces CAG repeat expansion, supporting PMS1 as a genetic modifier of HD and a potential target for therapeutic intervention. Although splice modulation provides one strategy, genome-wide transcriptomics also emphasize consideration of cell-type specific effects and polymorphic variation at both target and off-target sites.


Asunto(s)
Enfermedad de Huntington , Humanos , Enfermedad de Huntington/genética , Exones/genética , Perfilación de la Expresión Génica , Heterocigoto , Homocigoto , Proteínas MutL , Proteínas de Neoplasias
20.
Brain Commun ; 6(2): fcae016, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38449714

RESUMEN

Expansions of glutamine-coding CAG trinucleotide repeats cause a number of neurodegenerative diseases, including Huntington's disease and several of spinocerebellar ataxias. In general, age-at-onset of the polyglutamine diseases is inversely correlated with the size of the respective inherited expanded CAG repeat. Expanded CAG repeats are also somatically unstable in certain tissues, and age-at-onset of Huntington's disease corrected for individual HTT CAG repeat length (i.e. residual age-at-onset), is modified by repeat instability-related DNA maintenance/repair genes as demonstrated by recent genome-wide association studies. Modification of one polyglutamine disease (e.g. Huntington's disease) by the repeat length of another (e.g. ATXN3, CAG expansions in which cause spinocerebellar ataxia 3) has also been hypothesized. Consequently, we determined whether age-at-onset in Huntington's disease is modified by the CAG repeats of other polyglutamine disease genes. We found that the CAG measured repeat sizes of other polyglutamine disease genes that were polymorphic in Huntington's disease participants but did not influence Huntington's disease age-at-onset. Additional analysis focusing specifically on ATXN3 in a larger sample set (n = 1388) confirmed the lack of association between Huntington's disease residual age-at-onset and ATXN3 CAG repeat length. Additionally, neither our Huntington's disease onset modifier genome-wide association studies single nucleotide polymorphism data nor imputed short tandem repeat data supported the involvement of other polyglutamine disease genes in modifying Huntington's disease. By contrast, our genome-wide association studies based on imputed short tandem repeats revealed significant modification signals for other genomic regions. Together, our short tandem repeat genome-wide association studies show that modification of Huntington's disease is associated with short tandem repeats that do not involve other polyglutamine disease-causing genes, refining the landscape of Huntington's disease modification and highlighting the importance of rigorous data analysis, especially in genetic studies testing candidate modifiers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA