RESUMEN
Oncogenic alterations to DNA are not transforming in all cellular contexts1,2. This may be due to pre-existing transcriptional programmes in the cell of origin. Here we define anatomic position as a major determinant of why cells respond to specific oncogenes. Cutaneous melanoma arises throughout the body, whereas the acral subtype arises on the palms of the hands, soles of the feet or under the nails3. We sequenced the DNA of cutaneous and acral melanomas from a large cohort of human patients and found a specific enrichment for BRAF mutations in cutaneous melanoma and enrichment for CRKL amplifications in acral melanoma. We modelled these changes in transgenic zebrafish models and found that CRKL-driven tumours formed predominantly in the fins of the fish. The fins are the evolutionary precursors to tetrapod limbs, indicating that melanocytes in these acral locations may be uniquely susceptible to CRKL. RNA profiling of these fin and limb melanocytes, when compared with body melanocytes, revealed a positional identity gene programme typified by posterior HOX13 genes. This positional gene programme synergized with CRKL to amplify insulin-like growth factor (IGF) signalling and drive tumours at acral sites. Abrogation of this CRKL-driven programme eliminated the anatomic specificity of acral melanoma. These data suggest that the anatomic position of the cell of origin endows it with a unique transcriptional state that makes it susceptible to only certain oncogenic insults.
Asunto(s)
Melanoma , Neoplasias Cutáneas , Animales , Animales Modificados Genéticamente , Carcinogénesis/genética , Pie , Mano , Humanos , Melanoma/patología , Uñas , Oncogenes/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Transcripción Genética , Pez Cebra/genética , Melanoma Cutáneo MalignoRESUMEN
Studying cancer metabolism gives insight into tumorigenic survival mechanisms and susceptibilities. In melanoma, we identify HEXIM1, a transcription elongation regulator, as a melanoma tumor suppressor that responds to nucleotide stress. HEXIM1 expression is low in melanoma. Its overexpression in a zebrafish melanoma model suppresses cancer formation, while its inactivation accelerates tumor onset in vivo. Knockdown of HEXIM1 rescues zebrafish neural crest defects and human melanoma proliferation defects that arise from nucleotide depletion. Under nucleotide stress, HEXIM1 is induced to form an inhibitory complex with P-TEFb, the kinase that initiates transcription elongation, to inhibit elongation at tumorigenic genes. The resulting alteration in gene expression also causes anti-tumorigenic RNAs to bind to and be stabilized by HEXIM1. HEXIM1 plays an important role in inhibiting cancer cell-specific gene transcription while also facilitating anti-cancer gene expression. Our study reveals an important role for HEXIM1 in coupling nucleotide metabolism with transcriptional regulation in melanoma.
Asunto(s)
Melanoma/metabolismo , Factor B de Elongación Transcripcional Positiva/genética , Pirimidinas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Melanoma/genética , Melanoma/patología , Melanoma Experimental , Proteínas Oncogénicas/genética , Factores de Transcripción , Transcripción Genética , Proteínas Supresoras de Tumor/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
The casper strain of zebrafish is widely used in studies ranging from cancer to neuroscience. casper offers the advantage of relative transparency throughout adulthood, making it particularly useful for in vivo imaging by epifluorescence, confocal, and light sheet microscopy. casper was developed by selective breeding of two previously described recessive pigment mutants: 1) nacre, which harbors an inactivating mutation of the mitfa gene, rendering the fish devoid of pigmented melanocytes; and 2) roy orbison, a mutant with a so-far unidentified genetic cause that lacks reflective iridophores. To clarify the molecular nature of the roy orbison mutation, such that it can inform studies using casper, we undertook an effort to positionally clone the roy orbison mutation. We find that roy orbison is caused by an intronic defect in the gene mpv17, encoding an inner mitochondrial membrane protein that has been implicated in the human mitochondrial DNA depletion syndrome. The roy orbison mutation is phenotypically and molecularly remarkably similar to another zebrafish iridophore mutant called transparent. Using Cas9-induced crispants and germline mutants with a disrupted mpv17 open reading frame, we show in trans-heterozygote embryos that new frameshift alleles of mpv17, roy orbison, and transparent fail to complement each other. Our work provides genetic evidence that both roy orbison and transparent affect the mpv17 locus by a similar if not identical genetic lesion. Identification of mpv17 mutants will allow for further work probing the relationship between mitochondrial function and pigmentation, which has to date received little attention.
Asunto(s)
Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Mutación/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Alelos , Animales , Emparejamiento Base/genética , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Mapeo Cromosómico , ADN Mitocondrial/genética , Técnicas de Silenciamiento del Gen , Sitios Genéticos , Proteínas Mitocondriales/metabolismo , Morfolinos/farmacología , Mutagénesis/genética , Fenotipo , Pigmentación/efectos de los fármacos , Pigmentación/genética , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
We demonstrate the feasibility of using novel, small energy harvesters to power atmospheric sensors and radios simply attached to a single conductor of existing overhead power distribution lines. We demonstrate the ability to harvest the required power for operating multiple atmospheric and power-system sensors, together with short-range radios that could broadcast atmospheric sensor data to the cellphones of people nearby. Occasional long-range broadcasts of the data could also be made of both atmospheric and power-line conditions.
RESUMEN
BACKGROUND: Cancer genomes evolve in both space and time, which contributes to the genetic heterogeneity that underlies tumor progression and drug resistance. In human melanoma, identifying mechanistically important events in tumor evolution is hampered due to the high background mutation rate from ultraviolet (UV) light. Cross-species oncogenomics is a powerful tool for identifying these core events, in which transgenically well-defined animal models of cancer are compared to human cancers to identify key conserved alterations. RESULTS: We use a zebrafish model of tumor progression and drug resistance for cross-species genomic analysis in melanoma. Zebrafish transgenic tumors are initiated with just 2 genetic lesions, BRAFV600E and p53-/-, yet take 4-6 months to appear, at which time whole genome sequencing demonstrated >3,000 new mutations. An additional 4-month exposure to the BRAF inhibitor vemurafenib resulted in a highly drug resistant tumor that showed 3 additional new DNA mutations in the genes BUB1B, PINK1, and COL16A1. These genetic changes in drug resistance are accompanied by a massive reorganization of the transcriptome, with differential RNA expression of over 800 genes, centered on alterations in cAMP and PKA signaling. By comparing both the DNA and mRNA changes to a large panel of human melanomas, we find that there is a highly significant enrichment of these alterations in human patients with vemurafenib resistant disease. CONCLUSIONS: Our results suggest that targeting of alterations that are conserved between zebrafish and humans may offer new avenues for therapeutic intervention. The approaches described here will be broadly applicable to the diverse array of cancer models available in the zebrafish, which can be used to inform human cancer genomics.
Asunto(s)
Transformación Celular Neoplásica/genética , Evolución Molecular , Genoma , Genómica , Melanoma/genética , Animales , Análisis por Conglomerados , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Melanoma/metabolismo , Melanoma/patología , Mutación , Transducción de Señal , Especificidad de la Especie , Pez CebraRESUMEN
Rhabdomyosarcoma is a pediatric malignancy thought to arise from the uncontrolled proliferation of myogenic cells. Here, we have generated models of rhabdomyosarcoma in the zebrafish by inducing oncogenic KRAS(G12D) expression at different stages during muscle development. Several zebrafish promoters were used, including the cdh15 and rag2 promoters, which drive gene expression in early muscle progenitors, and the mylz2 promoter, which is expressed in differentiating myoblasts. The tumors that developed differed in their ability to recapitulate normal myogenesis. cdh15:KRAS(G12D) and rag2:KRAS(G12D) fish developed tumors that displayed an inability to complete muscle differentiation as determined by histological appearance and gene expression analyses. By contrast, mylz2:KRAS(G12D) tumors more closely resembled mature skeletal muscle and were most similar to well-differentiated human rhabdomyosarcoma in terms of gene expression. mylz2:KRAS(G12D) fish showed significantly improved survival compared with cdh15:KRAS(G12D) and rag2:KRAS(G12D) fish. Tumor-propagating activity was enriched in myf5-expressing cell populations within all of the tumor types. Our results demonstrate that oncogenic KRAS(G12D) expression at different stages during muscle development has profound effects on the ability of tumor cells to recapitulate normal myogenesis, altering the tumorigenic capability of these cells.
Asunto(s)
Modelos Animales de Enfermedad , Desarrollo de Músculos , Rabdomiosarcoma/genética , Animales , Animales Modificados Genéticamente , Cadherinas/genética , Miosinas Cardíacas/genética , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Cadenas Ligeras de Miosina/genética , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Células Madre/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas ras/genéticaRESUMEN
The zebrafish has emerged as an important model for studying cancer biology. Identification of DNA, RNA and chromatin abnormalities can give profound insight into the mechanisms of tumorigenesis and the there are many techniques for analyzing the genomes of these tumors. Here, I present an overview of the available technologies for analyzing tumor genomes in the zebrafish, including array based methods as well as next-generation sequencing technologies. I also discuss the ways in which zebrafish tumor genomes can be compared to human genomes using cross-species oncogenomics, which act to filter genomic noise and ultimately uncover central drivers of malignancy. Finally, I discuss downstream analytic tools, including network analysis, that can help to organize the alterations into coherent biological frameworks that can then be investigated further.
Asunto(s)
Modelos Animales de Enfermedad , Genómica , Neoplasias/genética , Animales , Exoma , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia por Matrices de Oligonucleótidos , Pez CebraRESUMEN
Lipid droplets are fat storage organelles composed of a protein envelope and lipid rich core. Regulation of this protein envelope underlies differential lipid droplet formation and function. In melanoma, lipid droplet formation has been linked to tumor progression and metastasis, but it is unknown whether lipid droplet proteins play a role. To address this, we performed proteomic analysis of the lipid droplet envelope in melanoma. We found that lipid droplet proteins were differentially enriched in distinct melanoma states; from melanocytic to undifferentiated. DHRS3, which converts all-trans-retinal to all-trans-retinol, is upregulated in the MITFLO/undifferentiated/neural crest-like melanoma cell state and reduced in the MITFHI/melanocytic state. Increased DHRS3 expression is sufficient to drive MITFHI/melanocytic cells to a more undifferentiated/invasive state. These changes are due to retinoic acid mediated regulation of melanocytic genes. Our data demonstrate that melanoma cell state can be regulated by expression of lipid droplet proteins which affect downstream retinoid signaling.
RESUMEN
The advent of large-scale sequencing in both development and disease has identified large numbers of candidate genes that may be linked to important phenotypes. Validating the function of these candidates in vivo is challenging, due to low efficiency and low throughput of most model systems. We have developed a rapid, scalable system for assessing the role of candidate genes using zebrafish. We generated transgenic zebrafish in which Cas9 was knocked-in to the endogenous mitfa locus, a master transcription factor of the melanocyte lineage. We used this system to identify both cell-autonomous and non-cell autonomous regulators of normal melanocyte development. We then applied this to the melanoma setting to demonstrate that loss of genes required for melanocyte survival can paradoxically promote more aggressive phenotypes, highlighting that in vitro screens can mask in vivo phenotypes. Our high-efficiency genetic approach offers a versatile tool for exploring developmental processes and disease mechanisms that can readily be applied to other cell lineages.
RESUMEN
Lipid droplets are fat storage organelles composed of a protein envelope and lipid-rich core. Regulation of this protein envelope underlies differential lipid droplet formation and function. In melanoma, lipid droplet formation has been linked to tumor progression and metastasis, but it is unknown whether lipid droplet proteins play a role. To address this, we performed proteomic analysis of the lipid droplet envelope in melanoma. We found that lipid droplet proteins were differentially enriched in distinct melanoma states; from melanocytic to undifferentiated. DHRS3, which converts all-trans-retinal to all-trans-retinol, is upregulated in the MITFLO/undifferentiated/neural crest-like melanoma cell state and reduced in the MITFHI/melanocytic state. Increased DHRS3 expression is sufficient to drive MITFHI/melanocytic cells to a more undifferentiated/invasive state. These changes are due to retinoic acid-mediated regulation of melanocytic genes. Our data demonstrate that melanoma cell state can be regulated by expression of lipid droplet proteins which affect downstream retinoid signaling.
RESUMEN
Keratinocytes, the dominant cell type in the melanoma microenvironment during tumor initiation, exhibit diverse effects on melanoma progression. Using a zebrafish model of melanoma and human cell co-cultures, we observed that keratinocytes undergo an Epithelial-Mesenchymal Transition (EMT)-like transformation in the presence of melanoma, reminiscent of their behavior during wound healing. Surprisingly, overexpression of the EMT transcription factor Twist in keratinocytes led to improved overall survival in zebrafish melanoma models, despite no change in tumor initiation rates. This survival benefit was attributed to reduced melanoma invasion, as confirmed by human cell co-culture assays. Single-cell RNA-sequencing revealed a unique melanoma cell cluster in the Twist-overexpressing condition, exhibiting a more differentiated, less invasive phenotype. Further analysis nominated homotypic jam3b-jam3b and pgrn-sort1a interactions between Twist-overexpressing keratinocytes and melanoma cells as potential mediators of the invasive restraint. Our findings suggest that EMT in the tumor microenvironment (TME) may limit melanoma invasion through altered cell-cell interactions.
RESUMEN
Acral melanoma (AM) is an aggressive melanoma variant that arises from palmar, plantar, and nail unit melanocytes. Compared to non-acral cutaneous melanoma (CM), AM is biologically distinct, has an equal incidence across genetic ancestries, typically presents in advanced stage disease, is less responsive to therapy, and has an overall worse prognosis. Independent analysis of published genomic and transcriptomic sequencing identified that receptor tyrosine kinase (RTK) ligands and adapter proteins are frequently amplified, translocated, and/or overexpressed in AM. To target these unique genetic changes, a zebrafish acral melanoma model was exposed to a panel of narrow and broad spectrum multi-RTK inhibitors, revealing that dual FGFR/VEGFR inhibitors decrease acral-analogous melanocyte proliferation and migration. The potent pan-FGFR/VEGFR inhibitor, Lenvatinib, uniformly induces tumor regression in AM patient-derived xenograft (PDX) tumors but only slows tumor growth in CM models. Unlike other multi-RTK inhibitors, Lenvatinib is not directly cytotoxic to dissociated AM PDX tumor cells and instead disrupts tumor architecture and vascular networks. Considering the great difficulty in establishing AM cell culture lines, these findings suggest that AM may be more sensitive to microenvironment perturbations than CM. In conclusion, dual FGFR/VEGFR inhibition may be a viable therapeutic strategy that targets the unique biology of AM.
RESUMEN
Acral melanoma, which is not ultraviolet (UV)-associated, is the most common type of melanoma in several low- and middle-income countries including Mexico. Latin American samples are significantly underrepresented in global cancer genomics studies, which directly affects patients in these regions as it is known that cancer risk and incidence may be influenced by ancestry and environmental exposures. To address this, here we characterise the genome and transcriptome of 128 acral melanoma tumours from 96 Mexican patients, a population notable because of its genetic admixture. Compared with other studies of melanoma, we found fewer frequent mutations in classical driver genes such as BRAF, NRAS or NF1. While most patients had predominantly Amerindian genetic ancestry, those with higher European ancestry had increased frequency of BRAF mutations and a lower number of structural variants. These BRAF-mutated tumours have a transcriptional profile similar to cutaneous non-volar melanocytes, suggesting that acral melanomas in these patients may arise from a distinct cell of origin compared to other tumours arising in these locations. KIT mutations were found in a subset of these tumours, and transcriptional profiling defined three expression clusters; these characteristics were associated with overall survival. We highlight novel low-frequency drivers, such as SPHKAP, which correlate with a distinct genomic profile and clinical characteristics. Our study enhances knowledge of this understudied disease and underscores the importance of including samples from diverse ancestries in cancer genomics studies.
RESUMEN
Modelling adult diseases to understand their aetiology and progression, and to develop new therapies, is a major challenge for medical biology. We are excited by new efforts in the zebrafish community to develop models of adult diseases that range from cancer to heart, infectious and age-related diseases, and those that relate to toxicology and complex social behaviours. Here, we discuss some of the advances in the field of zebrafish models of adult disease, and where we see opportunities and challenges ahead.
Asunto(s)
Neoplasias , Pez Cebra , Animales , Humanos , Adulto , Conducta Social , Corazón , Modelos Animales de EnfermedadRESUMEN
Obesity is a rising concern and associated with an increase in numerous cancers, often in a sex-specific manner. Preclinical models are needed to deconvolute the intersection between obesity, sex and melanoma. Here, we generated a zebrafish system that can be used as a platform for studying these factors. We studied how germline overexpression of Agrp along with a high-fat diet affects melanomas dependent on BRAFV600E and loss of p53. This revealed an increase in tumor incidence and area in male, but not female, obese fish, consistent with the clinical literature. We then determined whether this was further affected by additional somatic mutations in the clinically relevant genes rb1 or ptena/b. We found that the male obesogenic effect on melanoma was present with tumors generated with BRAF;p53;Rb1 but not BRAF;p53;Pten. These data indicate that both germline (Agrp) and somatic (BRAF, Rb1) mutations contribute to obesity-related effects in melanoma. Given the rapid genetic tools available in the zebrafish, this provides a high-throughput system to dissect the interactions of genetics, diet, sex and host factors in obesity-related cancers.
Asunto(s)
Melanoma , Pez Cebra , Animales , Femenino , Masculino , Pez Cebra/genética , Pez Cebra/metabolismo , Proteína Relacionada con Agouti/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Melanoma/genética , Melanoma/patología , Mutación/genética , Obesidad/complicaciones , Obesidad/genética , DietaRESUMEN
Spatial variation in cellular phenotypes underlies heterogeneity in immune recognition and response to therapy in cancer and many other diseases. Spatial transcriptomics holds the potential to quantify such variation, but existing analysis methods are limited by their focus on individual tasks such as spot deconvolution. We present BayesTME, an end-to-end Bayesian method for analyzing spatial transcriptomics data. BayesTME unifies several previously distinct analysis goals under a single, holistic generative model. This unified approach enables BayesTME to deconvolve spots into cell phenotypes without any need for paired single-cell RNA-seq. BayesTME then goes beyond spot deconvolution to uncover spatial expression patterns among coordinated subsets of genes within phenotypes, which we term spatial transcriptional programs. BayesTME achieves state-of-the-art performance across myriad benchmarks. On human and zebrafish melanoma tissues, BayesTME identifies spatial transcriptional programs that capture fundamental biological phenomena such as bilateral symmetry and tumor-associated fibroblast and macrophage reprogramming. BayesTME is open source.
Asunto(s)
Benchmarking , Pez Cebra , Humanos , Animales , Teorema de Bayes , Pez Cebra/genética , Perfilación de la Expresión Génica , MacrófagosRESUMEN
Desmosomes are transmembrane protein complexes that contribute to cell-cell adhesion in epithelia and other tissues. Here, we report the discovery of frequent genetic alterations in the desmosome in human cancers, with the strongest signal seen in cutaneous melanoma where desmosomes are mutated in over 70% of cases. In primary but not metastatic melanoma biopsies, the burden of coding mutations on desmosome genes associates with a strong reduction in desmosome gene expression. Analysis by spatial transcriptomics suggests that these expression decreases occur in keratinocytes in the microenvironment rather than in primary melanoma tumor cells. In further support of a microenvironmental origin, we find that loss-of-function knockdowns of the desmosome in keratinocytes yield markedly increased proliferation of adjacent melanocytes in keratinocyte/melanocyte co-cultures. Thus, gradual accumulation of desmosome mutations in neighboring cells may prime melanocytes for neoplastic transformation.
RESUMEN
Melanoma exhibits numerous transcriptional cell states including neural crest-like cells as well as pigmented melanocytic cells. How these different cell states relate to distinct tumorigenic phenotypes remains unclear. Here, we use a zebrafish melanoma model to identify a transcriptional program linking the melanocytic cell state to a dependence on lipid droplets, the specialized organelle responsible for lipid storage. Single-cell RNA-sequencing of these tumors show a concordance between genes regulating pigmentation and those involved in lipid and oxidative metabolism. This state is conserved across human melanoma cell lines and patient tumors. This melanocytic state demonstrates increased fatty acid uptake, an increased number of lipid droplets, and dependence upon fatty acid oxidative metabolism. Genetic and pharmacologic suppression of lipid droplet production is sufficient to disrupt cell cycle progression and slow melanoma growth in vivo. Because the melanocytic cell state is linked to poor outcomes in patients, these data indicate a metabolic vulnerability in melanoma that depends on the lipid droplet organelle.
Asunto(s)
Gotas Lipídicas , Melanoma , Animales , Humanos , Gotas Lipídicas/metabolismo , Pez Cebra/genética , Melanoma/patología , Melanocitos/metabolismo , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/genéticaRESUMEN
In melanoma, predicting which tumors will ultimately metastasize guides treatment decisions. Transcriptional signatures of primary tumors have been utilized to predict metastasis, but which among these are driver or passenger events remains unclear. We used data from the adjuvant AVAST-M trial to identify a predictive gene signature in localized tumors that ultimately metastasized. Using a zebrafish model of primary melanoma, we interrogated the top genes from the AVAST-M signature in vivo. This identified GRAMD1B, a cholesterol transfer protein, as a bona fide metastasis suppressor, with a majority of knockout animals rapidly developing metastasis. Mechanistically, excess free cholesterol or its metabolite 27-hydroxycholesterol promotes invasiveness via activation of an AP-1 program, which is associated with increased metastasis in humans. Our data demonstrate that the transcriptional seeds of metastasis are embedded within localized tumors, suggesting that early targeting of these programs can be used to prevent metastatic relapse. SIGNIFICANCE: We analyzed human melanoma transcriptomics data to identify a gene signature predictive of metastasis. To rapidly test clinical signatures, we built a genetic metastasis platform in adult zebrafish and identified GRAMD1B as a suppressor of melanoma metastasis. GRAMD1B-associated cholesterol overload activates an AP-1 program to promote melanoma invasion. This article is highlighted in the In This Issue feature, p. 1.
Asunto(s)
Melanoma , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Recurrencia Local de Neoplasia/genética , Melanoma/patología , Perfilación de la Expresión Génica , Metástasis de la Neoplasia , Regulación Neoplásica de la Expresión GénicaRESUMEN
The enteric nervous system (ENS) is derived from both the vagal and sacral component of the neural crest (NC). Here, we present the derivation of sacral ENS precursors from human PSCs via timed exposure to FGF, WNT, and GDF11, which enables posterior patterning and transition from posterior trunk to sacral NC identity, respectively. Using a SOX2::H2B-tdTomato/T::H2B-GFP dual reporter hPSC line, we demonstrate that both trunk and sacral NC emerge from a double-positive neuro-mesodermal progenitor (NMP). Vagal and sacral NC precursors yield distinct neuronal subtypes and migratory behaviors in vitro and in vivo. Remarkably, xenografting of both vagal and sacral NC lineages is required to rescue a mouse model of total aganglionosis, suggesting opportunities in the treatment of severe forms of Hirschsprung's disease.