Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Biochemistry ; 63(1): 42-52, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38146842

RESUMEN

Inositol phosphates and their pyrophosphorylated derivatives are responsive to the phosphate supply and are agents of phosphate homeostasis and other aspects of physiology. It seems likely that the enzymes that interconvert these signals work against the prevailing milieu of mixed populations of competing substrates and products. The synthesis of inositol pyrophosphates is mediated in plants by two classes of ATP-grasp fold kinase: PPIP5 kinases, known as VIH, and members of the inositol tris/tetrakisphosphate kinase (ITPK) family, specifically ITPK1/2. A molecular explanation of the contribution of ITPK1/2 to inositol pyrophosphate synthesis and turnover in plants is incomplete: the absence of nucleotide in published crystal structures limits the explanation of phosphotransfer reactions, and little is known of the affinity of potential substrates and competitors for ITPK1. Herein, we describe a complex of ADP and StITPK1 at 2.26 Å resolution and use a simple fluorescence polarization approach to compare the affinity of binding of diverse inositol phosphates, inositol pyrophosphates, and analogues. By simple HPLC, we reveal the novel catalytic capability of ITPK1 for different inositol pyrophosphates and show Ins(3,4,5,6)P4 to be a potent inhibitor of the inositol pyrophosphate-synthesizing activity of ITPK1. We further describe the exquisite specificity of ITPK1 for the myo-isomer among naturally occurring inositol hexakisphosphates.


Asunto(s)
Difosfatos , Solanum tuberosum , Fosfatos de Inositol , Ácido Fítico
2.
Biochem J ; 480(6): 433-453, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36896917

RESUMEN

Myo-inositol tris/tetrakisphosphate kinases (ITPKs) catalyze diverse phosphotransfer reactions with myo-inositol phosphate and myo-inositol pyrophosphate substrates. However, the lack of structures of nucleotide-coordinated plant ITPKs thwarts a rational understanding of phosphotransfer reactions of the family. Arabidopsis possesses a family of four ITPKs of which two isoforms, ITPK1 and ITPK4, control inositol hexakisphosphate and inositol pyrophosphate levels directly or by provision of precursors. Here, we describe the specificity of Arabidopsis ITPK4 to pairs of enantiomers of diverse inositol polyphosphates and show how substrate specificity differs from Arabidopsis ITPK1. Moreover, we provide a description of the crystal structure of ATP-coordinated AtITPK4 at 2.11 Šresolution that, along with a description of the enantiospecificity of the enzyme, affords a molecular explanation for the diverse phosphotransferase activity of this enzyme. That Arabidopsis ITPK4 has a KM for ATP in the tens of micromolar range, potentially explains how, despite the large-scale abolition of InsP6, InsP7 and InsP8 synthesis in Atitpk4 mutants, Atitpk4 lacks the phosphate starvation responses of Atitpk1 mutants. We further demonstrate that Arabidopsis ITPK4 and its homologues in other plants possess an N-terminal haloacid dehalogenase-like fold not previously described. The structural and enzymological information revealed will guide elucidation of ITPK4 function in diverse physiological contexts, including InsP8-dependent aspects of plant biology.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Difosfatos , Fosfatos de Inositol , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Ácido Fítico , Adenosina Trifosfato
3.
Biochem J ; 477(14): 2621-2638, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32706850

RESUMEN

Inositol polyphosphates are ubiquitous molecular signals in metazoans, as are their pyrophosphorylated derivatives that bear a so-called 'high-energy' phosphoanhydride bond. A structural rationale is provided for the ability of Arabidopsis inositol tris/tetrakisphosphate kinase 1 to discriminate between symmetric and enantiomeric substrates in the production of diverse symmetric and asymmetric myo-inositol phosphate and diphospho-myo-inositol phosphate (inositol pyrophosphate) products. Simple tools are applied to chromatographic resolution and detection of known and novel diphosphoinositol phosphates without resort to radiolabeling approaches. It is shown that inositol tris/tetrakisphosphate kinase 1 and inositol pentakisphosphate 2-kinase comprise a reversible metabolic cassette converting Ins(3,4,5,6)P4 into 5-InsP7 and back in a nucleotide-dependent manner. Thus, inositol tris/tetrakisphosphate kinase 1 is a nexus of bioenergetics status and inositol polyphosphate/diphosphoinositol phosphate metabolism. As such, it commands a role in plants that evolution has assigned to a different class of enzyme in mammalian cells. The findings and the methods described will enable a full appraisal of the role of diphosphoinositol phosphates in plants and particularly the relative contribution of reversible inositol phosphate hydroxykinase and inositol phosphate phosphokinase activities to plant physiology.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfatos de Inositol/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Adenosina Trifosfato/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatografía Líquida de Alta Presión , Cromatografía por Intercambio Iónico/métodos , Fosfatos de Inositol/análisis , Mesilatos/química , Mutación , Radioisótopos de Fósforo , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Especificidad por Sustrato
4.
Nat Commun ; 15(1): 1502, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374076

RESUMEN

D-myo-inositol 1,4,5-trisphosphate (InsP3) is a fundamental second messenger in cellular Ca2+ mobilization. InsP3 3-kinase, a highly specific enzyme binding InsP3 in just one mode, phosphorylates InsP3 specifically at its secondary 3-hydroxyl group to generate a tetrakisphosphate. Using a chemical biology approach with both synthetised and established ligands, combining synthesis, crystallography, computational docking, HPLC and fluorescence polarization binding assays using fluorescently-tagged InsP3, we have surveyed the limits of InsP3 3-kinase ligand specificity and uncovered surprisingly unforeseen biosynthetic capacity. Structurally-modified ligands exploit active site plasticity generating a helix-tilt. These facilitated uncovering of unexpected substrates phosphorylated at a surrogate extended primary hydroxyl at the inositol pseudo 3-position, applicable even to carbohydrate-based substrates. Crystallization experiments designed to allow reactions to proceed in situ facilitated unequivocal characterization of the atypical tetrakisphosphate products. In summary, we define features of InsP3 3-kinase plasticity and substrate tolerance that may be more widely exploitable.


Asunto(s)
Inositol 1,4,5-Trifosfato , Fosfotransferasas (Aceptor de Grupo Alcohol) , Inositol 1,4,5-Trifosfato/metabolismo , Dominio Catalítico , Ligandos , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfatos de Inositol/metabolismo , Calcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo
5.
J Biol Chem ; 287(35): 29237-49, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22745128

RESUMEN

Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP(5) 2-K) catalyzes the synthesis of inositol 1,2,3,4,5,6-hexakisphosphate from ATP and IP(5). Inositol 1,2,3,4,5,6-hexakisphosphate is implicated in crucial processes such as mRNA export, DNA editing, and phosphorus storage in plants. We previously solved the first structure of an IP(5) 2-K, which shed light on aspects of substrate recognition. However, failure of IP(5) 2-K to crystallize in the absence of inositide prompted us to study putative conformational changes upon substrate binding. We have made mutations to residues on a region of the protein that produces a clasp over the active site. A W129A mutant allowed us to capture IP(5) 2-K in its different conformations by crystallography. Thus, the IP(5) 2-K apo-form structure displays an open conformation, whereas the nucleotide-bound form shows a half-closed conformation, in contrast to the inositide-bound form obtained previously in a closed conformation. Both nucleotide and inositide binding produce large conformational changes that can be understood as two rigid domain movements, although local changes were also observed. Changes in intrinsic fluorescence upon nucleotide and inositide binding are in agreement with the crystallographic findings. Our work suggests that the clasp might be involved in enzyme kinetics, with the N-terminal lobe being essential for inositide binding and subsequent conformational changes. We also show how IP(5) 2-K discriminates between inositol 1,3,4,5-tetrakisphosphate and 3,4,5,6-tetrakisphosphate enantiomers and that substrate preference can be manipulated by Arg(130) mutation. Altogether, these results provide a framework for rational design of specific inhibitors with potential applications as biological tools for in vivo studies, which could assist in the identification of novel roles for IP(5) 2-K in mammals.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Ácido Fítico/química , Sustitución de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cristalografía por Rayos X , Cinética , Mutación Missense , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Ácido Fítico/metabolismo , Estructura Terciaria de Proteína , Especificidad por Sustrato/fisiología
6.
PLoS One ; 17(10): e0275742, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36260560

RESUMEN

Phytases, enzymes that degrade phytate present in feedstuffs, are widely added to the diets of monogastric animals. Many studies have correlated phytase addition with improved animal productivity and a subset of these have sought to correlate animal performance with phytase-mediated generation of inositol phosphates in different parts of the gastro-intestinal tract or with release of inositol or of phosphate, the absorbable products of phytate degradation. Remarkably, the effect of dietary phytase on tissue inositol phosphates has not been studied. The objective of this study was to determine effect of phytase supplementation on liver and kidney myo-inositol and myo-inositol phosphates in broiler chickens. For this, methods were developed to measure inositol phosphates in chicken tissues. The study comprised wheat/soy-based diets containing one of three levels of phytase (0, 500 and 6,000 FTU/kg of modified E. coli 6-phytase). Diets were provided to broilers for 21 D and on day 21 digesta were collected from the gizzard and ileum. Liver and kidney tissue were harvested. Myo-inositol and inositol phosphates were measured in diet, digesta, liver and kidney. Gizzard and ileal content inositol was increased progressively, and total inositol phosphates reduced progressively, by phytase supplementation. The predominant higher inositol phosphates detected in tissues, D-and/or L-Ins(3,4,5,6)P4 and Ins(1,3,4,5,6)P5, differed from those (D-and/or L-Ins(1,2,3,4)P4, D-and/or L-Ins(1,2,5,6)P4, Ins(1,2,3,4,6)P5, D-and/or L-Ins(1,2,3,4,5)P5 and D-and/or L-Ins(1,2,4,5,6)P5) generated from phytate (InsP6) degradation by E. coli 6-phytase or endogenous feed phytase, suggesting tissue inositol phosphates are not the result of direct absorption. Kidney inositol phosphates were reduced progressively by phytase supplementation. These data suggest that tissue inositol phosphate concentrations can be influenced by dietary phytase inclusion rate and that such effects are tissue specific, though the consequences for physiology of such changes have yet to be elucidated.


Asunto(s)
6-Fitasa , Animales , 6-Fitasa/metabolismo , Fosfatos de Inositol/metabolismo , Ácido Fítico/metabolismo , Pollos/fisiología , Aves de Corral/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Escherichia coli/metabolismo , Alimentación Animal/análisis , Digestión , Suplementos Dietéticos , Riñón/metabolismo , Fosfatos/metabolismo
7.
PLoS One ; 17(8): e0272015, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36044476

RESUMEN

Phylogenetic analysis, homology modelling and biochemical methods have been employed to characterize a phytase from a Gram-negative soil bacterium. Acinetobacter sp. AC1-2 phytase belongs to clade 2 of the histidine (acid) phytases, to the Multiple Inositol Polyphosphate Phosphatase (MINPP) subclass. The enzyme was extraordinarily stable in solution both at room temperature and 4°C, retaining near 100% activity over 755 days. It showed a broad pH activity profile from 2-8.5 with maxima at 3, 4.5-5 and 6. The enzyme showed Michaelis-Menten kinetics and substrate inhibition (Vmax, Km, and Ki, 228 U/mg, 0.65 mM and 2.23 mM, respectively). Homology modelling using the crystal structure of a homologous MINPP from a human gut commensal bacterium indicated the presence of a potentially stabilising polypeptide loop (a U-loop) straddling the active site. By employ of the enantiospecificity of Arabidopsis inositol tris/tetrakisphosphate kinase 1 for inositol pentakisphosphates, we show AC1-2 MINPP to possess D6-phytase activity, which allowed modelling of active site specificity pockets for InsP6 substrate. While phytase gene transcription was unaltered in rich media, it was repressed in minimal media with phytic acid and orthophosphate as phosphate sources. The results of this study reveal AC1-2 MINPP to possess desirable attributes relevant to biotechnological use.


Asunto(s)
6-Fitasa , Acinetobacter , Monoéster Fosfórico Hidrolasas , 6-Fitasa/química , 6-Fitasa/metabolismo , Acinetobacter/química , Acinetobacter/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Concentración de Iones de Hidrógeno , Fosfatos , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Filogenia , Ácido Fítico , Microbiología del Suelo , Especificidad por Sustrato
8.
J Med Chem ; 64(7): 3813-3826, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33724834

RESUMEN

Src homology 2 domain-containing inositol phosphate phosphatase 2 (SHIP2) is one of the 10 human inositol phosphate 5-phosphatases. One of its physiological functions is dephosphorylation of phosphatidylinositol 3,4,5-trisphosphate, PtdIns(3,4,5)P3. It is therefore a therapeutic target for pathophysiologies dependent on PtdIns(3,4,5)P3 and PtdIns(3,4)P2. Therapeutic interventions are limited by the dearth of crystallographic data describing ligand/inhibitor binding. An active site-directed fluorescent probe facilitated screening of compound libraries for SHIP2 ligands. With two additional orthogonal assays, several ligands including galloflavin were identified as low micromolar Ki inhibitors. One ligand, an oxo-linked ethylene-bridged dimer of benzene 1,2,4-trisphosphate, was shown to be an uncompetitive inhibitor that binds to a regulatory site on the catalytic domain. We posit that binding of ligands to this site restrains L4 loop motions that are key to interdomain communications that accompany high catalytic activity with phosphoinositide substrate. This site may, therefore, be a future druggable target for medicinal chemistry.


Asunto(s)
Fluoresceínas/metabolismo , Colorantes Fluorescentes/metabolismo , Fosfatos de Inositol/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/antagonistas & inhibidores , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Sitio Alostérico , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Línea Celular Tumoral , Cristalografía por Rayos X , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Ligandos , Ratones , Simulación del Acoplamiento Molecular , Células 3T3 NIH , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/química , Unión Proteica
9.
ACS Med Chem Lett ; 11(3): 309-315, 2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32184962

RESUMEN

SHIP2 (SH2-domain containing inositol 5-phosphatase type 2) is a canonical 5-phosphatase, which, through its catalytic action on PtdInsP3, regulates the PI3K/Akt pathway and metabolic action of insulin. It is a drug target, but there is limited evidence of inhibition of SHIP2 by small molecules in the literature. With the goal to investigate inhibition, we report a homologous family of synthetic, chromophoric benzene phosphate substrates of SHIP2 that display the headgroup regiochemical hallmarks of the physiological inositide substrates that have proved difficult to crystallize with 5-phosphatases. Using time-dependent density functional theory (TD-DFT), we explore the intrinsic fluorescence of these novel substrates and show how fluorescence can be used to assay enzyme activity. The TD-DFT approach promises to inform rational design of enhanced active site probes for the broadest family of inositide-binding/metabolizing proteins, while maintaining the regiochemical properties of bona fide inositide substrates.

10.
Anim Nutr ; 5(2): 196-201, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31193977

RESUMEN

This experiment was conducted to determine the effects of time and freezing temperature during sampling on gastric phytate (myo-inositol [MYO] hexakisphosphate [InsP6]), lower inositol phosphates (InsP2-5) and MYO concentrations in pigs fed diets containing different levels of phytase. Forty pigs were fed 1 of 4 wheat-barley diets on an ad libitum basis for 28 d. The diets comprised a nutritionally adequate positive control (PC), a similar diet but with Ca and P reduced by 1.6 and 1.24 g/kg, respectively (NC), and the NC supplemented with 500 (NC + 500) or 2,000 (NC + 2000) FTU phytase/kg. At the end of the experiment, chyme were collected from the stomach, thoroughly mixed and 2 subsamples (30 mL) were frozen immediately: one snap-frozen at -79 °C and the other at -20 °C. The remaining chyme were left to sit at room temperature (20 °C) and further subsamples were collected and frozen as above at 5, 10 and 15 min from the point of mixing. There were linear reductions in gastric InsP6 concentration over time during sampling (P < 0.001), irrespective of diet or freezing temperature. Moreover, InsP6 concentration was influenced by a diet × freezing temperature interaction (P < 0.05), with less InsP6 measured in chyme frozen at -20 °C than at -79 °C; however, this difference was greater in the control diets than the phytase supplemented diets. Freezing chyme at -79 °C recovered more ∑InsP2-5 + MYO than freezing at -20 °C in pigs fed phytase supplemented diets; however, this difference was not apparent in the diets without phytase (diet × freezing temperature, P < 0.01). It can be concluded that significant phytate hydrolysis occurs in the gastric chyme of pigs during sampling and processing, irrespective of supplementary phytase activity. Therefore, to minimise post-slaughter phytate degradation and changes in the gastric inositol phosphate profile, chyme should be snap-frozen immediately after collection.

11.
J Anim Sci ; 97(9): 3907-3919, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31294448

RESUMEN

The objective of this present study was to determine the effects of phytase dosing on growth performance, mineral digestibility, phytate breakdown, and the level of glucose transporter type 4 (GLUT4) in muscle plasma membranes of weanling pigs. A total of 160 barrows were used in a randomized completely block design and assigned to 4 treatments for a 7-wk study. Depending on the feeding phase, diets differed in dietary calcium (Ca) and phosphorus (P) levels (positive control [PC]: 8 to 6.8g/kg Ca; 7.3 to 6.3 g/kg P; negative control [NC]: 5.5 to 5.2 g/kg Ca; 5.4 to 4.7 g/kg P). NC diets were supplemented with phytase at 0 (NC); 500 (NC + 500 FTU); or 2,000 FTU/kg (NC + 2,000 FTU) phytase units/kg. Blood was collected after fasting (day 48) or feeding (day 49) for measurement of plasma inositol concentrations. On day 49, 2 pigs per pen were euthanized, and duodenal and ileal digesta samples were collected to determine inositol phosphates (InsP6-2) concentrations. High phytase supplementation increased BW on days 21, 35, and 49 (P < 0.05). Over the entire feeding period, ADG, ADFI, and feed efficiency were increased by NC + 2,000 FTU compared with the other treatments (P < 0.05). Postprandial plasma inositol concentration was increased in NC + 2,000 (P < 0.01), but there was only a tendency (P = 0.06) of a higher fasting plasma inositol concentration in this group. Inositol concentrations in the portal vein plasma (day 49) were not different among treatments. Duodenal digesta InsP5 and InsP6 concentrations were similar in PC and NC, but higher in these 2 treatments (P < 0.05) than those supplemented with phytase. Phytase supplementation decreased InsP6-4, resulting in increased InsP3-2 and myo-inositol concentrations. Similar effects were found in ileal contents. Compared with NC, phytase supplementation resulted in greater cumulative InsP6-2 disappearance (93.6% vs. 72.8% vs. 25.0%, for NC + 2,000 FTU, NC + 500 FTU and NC, respectively, P < 0.01) till the distal ileum. Longissimus dorsi muscle plasma membrane GLUT4 concentration was increased by NC + 2,000 FTU (P < 0.01) compared with NC. In summary, high phytase supplementation increased growth performance of nursery pigs. The higher myo-inositol release from phytate could contribute to the increased expression of GLUT4 in muscle plasma membranes. Further investigation is needed to determine whether this is associated with enhanced cellular glucose uptake and utilization.


Asunto(s)
6-Fitasa/administración & dosificación , Suplementos Dietéticos/análisis , Transportador de Glucosa de Tipo 4/metabolismo , Inositol/sangre , Ácido Fítico/metabolismo , Porcinos/crecimiento & desarrollo , Alimentación Animal/análisis , Animales , Calcio de la Dieta/metabolismo , Membrana Celular/metabolismo , Dieta/veterinaria , Íleon/metabolismo , Fosfatos de Inositol/metabolismo , Masculino , Músculos/metabolismo , Fósforo Dietético/metabolismo , Porcinos/fisiología
12.
Front Physiol ; 10: 1251, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632293

RESUMEN

The incidence of woody breast (WB) is increasing on a global scale representing a significant welfare problem and economic burden to the poultry industry and for which there is no effective treatment due to its unknown etiology. In this study, using diffuse reflectance spectroscopy (DRS) coupled with iSTAT portable clinical analyzer, we provide evidence that the circulatory- and breast muscle-oxygen homeostasis is dysregulated [low oxygen and hemoglobin (HB) levels] in chickens with WB myopathy compared to healthy counterparts. Molecular analysis showed that blood HB subunit Mu (HBM), Zeta (HBZ), and hephaestin (HEPH) expression were significantly down regulated; however, the expression of the subunit rho of HB beta (HBBR) was upregulated in chicken with WB compared to healthy counterparts. The breast muscle HBBR, HBE, HBZ, and hypoxia-inducible factor prolyl hydroxylase 2 (PHD2) mRNA abundances were significantly down regulated in WB-affected compared to normal birds. The expression of HIF-1α at mRNA and protein levels was significantly induced in breasts of WB-affected compared to unaffected birds confirming a local hypoxic status. The phosphorylated levels of the upstream mediators AKT at Ser473 site, mTOR at Ser2481 site, and PI3K P85 at Tyr458 site, as well as their mRNA levels were significantly increased in breasts of WB-affected birds. In attempt to identify a nutritional strategy to reduce WB incidence, male broiler chicks (Cobb 500, n = 576) were randomly distributed into 48 floor pens and subjected to six treatments (12 birds/pen; 8 pens/treatment): a nutrient adequate control group (PC), the PC supplemented with 0.3% myo-inositol (PC + MI), a negative control (NC) deficient in available P and Ca by 0.15 and 0.16%, respectively, the NC fed with quantum blue (QB) at 500 (NC + 500 FTU), 1,000 (NC + 1,000 FTU), or 2,000 FTU/kg of feed (NC + 2,000 FTU). Although QB-enriched diets did not affect growth performances (FCR and FE), it did reduce the severity of WB by 5% compared to the PC diet. This effect is mediated by reversing the expression profile of oxygen homeostasis-related genes; i.e., significant down regulation of HBBR and upregulation of HBM, HBZ, and HEPH in blood, as well as a significant upregulation of HBA1, HBBR, HBE, HBZ, and PHD2 in breast muscle compared to the positive control.

13.
Plant Soil ; 427(1-2): 149-161, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29880988

RESUMEN

BACKGROUND AND AIMS: In many soils inositol hexakisphosphate in its various forms is as abundant as inorganic phosphate. The organismal and geochemical processes that exchange phosphate between inositol hexakisphosphate and other pools of soil phosphate are poorly defined, as are the organisms and enzymes involved. We rationalized that simple enzymic synthesis of inositol hexakisphosphate labeled with 32P would greatly enable study of transformation of soil inositol phosphates when combined with robust HPLC separations of different inositol phosphates. METHODS: We employed the enzyme inositol pentakisphosphate 2-kinase, IP5 2-K, to transfer phosphate from [γ-32P]ATP to axial hydroxyl(s) of myo-, neo- and 1D-chiro-inositol phosphate substrates. RESULTS: 32P-labeled inositol phosphates were separated by anion exchange HPLC with phosphate eluents. Additional HPLC methods were developed to allow facile separation of myo-, neo-, 1D-chiro- and scyllo-inositol hexakisphosphate on acid gradients. CONCLUSIONS: We developed enzymic approaches that allow the synthesis of labeled myo-inositol 1,[32P]2,3,4,5,6-hexakisphosphate; neo-inositol 1,[32P]2,3,4,[32P]5,6 - hexakisphosphate and 1D-chiro-inositol [32P]1,2,3,4,5,[32P]6-hexakisphosphate. Additionally, we describe HPLC separations of all inositol hexakisphosphates yet identified in soils, using a collection of soil inositol phosphates described in the seminal historic studies of Cosgrove, Tate and coworkers. Our study will enable others to perform radiotracer experiments to analyze fluxes of phosphate to/from inositol hexakisphosphates in different soils.

14.
J Med Chem ; 61(19): 8838-8846, 2018 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-30160967

RESUMEN

Inositol pentakisphosphate 2-kinase catalyzes the phosphorylation of the axial 2-OH of myo-inositol 1,3,4,5,6-pentakisphosphate for de novo synthesis of myo-inositol hexakisphosphate. Disruption of inositol pentakisphosphate 2-kinase profoundly influences cellular processes, from nuclear mRNA export and phosphate homeostasis in yeast and plants to establishment of left-right asymmetry in zebrafish. We elaborate an active site fluorescent probe that allows high throughput screening of Arabidopsis inositol pentakisphosphate 2-kinase. We show that the probe has a binding constant comparable to the Km values of inositol phosphate substrates of this enzyme and can be used to prospect for novel substrates and inhibitors of inositol phosphate kinases. We identify several micromolar Ki inhibitors and validate this approach by solving the crystal structure of protein in complex with purpurogallin. We additionally solve structures of protein in complexes with epimeric higher inositol phosphates. This probe may find utility in characterization of a wide family of inositol phosphate kinases.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Colorantes Fluorescentes/metabolismo , Fosfatos de Inositol/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Plantones/metabolismo , Proteínas de Arabidopsis/química , Dominio Catalítico , Colorantes Fluorescentes/química , Ligandos , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Conformación Proteica
15.
J Med Chem ; 45(16): 3381-93, 2002 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12139449

RESUMEN

O(6)-substituted guanines are adenosine 5'-triphosphate (ATP) competitive inhibitors of CDK1/cyclin B1 and CDK2/cyclin A, the O(6) substituent occupying the kinase ribose binding site. Fifty-eight O(6)-substituted guanines were prepared to probe the ribose pocket, and the structures of four representative compounds bound to monomeric CDK2 were determined by X-ray crystallography. Optimum binding occurs with a moderately sized aliphatic O(6) substituent that packs tightly against the hydrophobic patch presented by the glycine loop, centered on Val18, an interaction promoted by the conformational restraints imposed in a cyclohexylmethyl or cyclohexenylmethyl ring. Structure-based design generated (R)-(2-amino-9H-purin-6-yloxymethyl)pyrrolidin-2-one (56), which reproduces the reported hydrogen bonds formed between ATP and Asp86 and Gln131 but failed to improve inhibitory potency. Thus, the parent compound O(6)-cyclohexylmethylguanine (NU2058, 25) is the preferred starting point for exploring other areas of the kinase active site.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteína Quinasa CDC2/metabolismo , Quinasas CDC2-CDC28 , Quinasas Ciclina-Dependientes/metabolismo , Inhibidores Enzimáticos/síntesis química , Guanina/análogos & derivados , Guanina/síntesis química , Proteínas Serina-Treonina Quinasas/metabolismo , Ribosa/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Sitios de Unión , Proteína Quinasa CDC2/antagonistas & inhibidores , División Celular/efectos de los fármacos , Cristalografía por Rayos X , Ciclina A/metabolismo , Ciclina B/metabolismo , Ciclina B1 , Quinasa 2 Dependiente de la Ciclina , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Guanina/química , Guanina/farmacología , Humanos , Modelos Moleculares , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Relación Estructura-Actividad , Células Tumorales Cultivadas
16.
J Med Chem ; 47(15): 3710-22, 2004 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15239650

RESUMEN

The adenosine 5'-triphosphate (ATP) competitive cyclin-dependent kinase inhibitor O(6)-cyclohexylmethylguanine (NU2058, 1) has been employed as the lead in a structure-based drug discovery program resulting in the discovery of the potent CDK1 and -2 inhibitor NU6102 (3, IC(50) = 9.5 nM and 5.4 nM vs CDK1/cyclinB and CDK2/cyclinA3, respectively). The SAR for this series have been explored further by the synthesis and evaluation of 45 N(2)-substituted analogues of NU2058. These studies have confirmed the requirement for the hydrogen bonding N(2)-NH group and the requirement for an aromatic N(2)-substituent to confer potency in the series. Additional potency is conferred by the presence of a group capable of donating a hydrogen bond at the 4'-position, for example, the 4'-hydroxy derivative (25, IC(50) = 94 nM and 69 nM vs CDK1/cyclinB and CDK2/cyclinA3, respectively), 4'-monomethylsulfonamide derivative (28, IC(50) = 9 nM and 7.0 nM vs CDK1/cyclinB and CDK2/cyclinA3, respectively), and 4'-carboxamide derivative (34, IC(50) = 67 nM and 64 nM vs CDK1/cyclinB and CDK2/cyclinA3, respectively). X-ray crystal structures have been obtained for key compounds and have been used to explain the observed trends in activity.


Asunto(s)
Proteína Quinasa CDC2/antagonistas & inhibidores , Quinasas CDC2-CDC28/antagonistas & inhibidores , Ciclohexanos/síntesis química , Guanina/análogos & derivados , Guanina/síntesis química , Purinas/síntesis química , Animales , Proteína Quinasa CDC2/química , Quinasas CDC2-CDC28/química , Cristalografía por Rayos X , Quinasa 2 Dependiente de la Ciclina , Ciclohexanos/química , Guanina/química , Humanos , Modelos Moleculares , Purinas/química , Purinas/farmacología , Estrellas de Mar , Relación Estructura-Actividad
17.
Chem Commun (Camb) ; (22): 2802-3, 2003 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-14651112

RESUMEN

SNAr displacement reactions of 6-cyclohexylmethoxy-2-fluoropurine, 6-amino-2-butylsulfonyl-4-cyclohexylmethoxypyrimidine and 2-amino-6-chloropurine with substituted anilines (e.g. the weakly nucleophilic 4-aminobenzenesulfonamide) are dramaticallyaccelerated in the presence of trifluoroacetic acid and occur especially efficiently in 2,2,2-trifluoroethanol solvent.


Asunto(s)
Purinas/química , Pirimidinas/química , Ácido Trifluoroacético/química , Trifluoroetanol/química , Estructura Molecular , Solventes/química
18.
Nat Struct Biol ; 9(10): 745-9, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12244298

RESUMEN

Aberrant control of cyclin-dependent kinases (CDKs) is a central feature of the molecular pathology of cancer. Iterative structure-based design was used to optimize the ATP- competitive inhibition of CDK1 and CDK2 by O(6)-cyclohexylmethylguanines, resulting in O(6)-cyclohexylmethyl-2-(4'- sulfamoylanilino)purine. The new inhibitor is 1,000-fold more potent than the parent compound (K(i) values for CDK1 = 9 nM and CDK2 = 6 nM versus 5,000 nM and 12,000 nM, respectively, for O(6)-cyclohexylmethylguanine). The increased potency arises primarily from the formation of two additional hydrogen bonds between the inhibitor and Asp 86 of CDK2, which facilitate optimum hydrophobic packing of the anilino group with the specificity surface of CDK2. Cellular studies with O(6)-cyclohexylmethyl-2-(4'- sulfamoylanilino) purine demonstrated inhibition of MCF-7 cell growth and target protein phosphorylation, consistent with CDK1 and CDK2 inhibition. The work represents the first successful iterative synthesis of a potent CDK inhibitor based on the structure of fully activated CDK2-cyclin A. Furthermore, the potency of O(6)-cyclohexylmethyl-2-(4'- sulfamoylanilino)purine was both predicted and fully rationalized on the basis of protein-ligand interactions.


Asunto(s)
Proteína Quinasa CDC2/antagonistas & inhibidores , Quinasas CDC2-CDC28 , Ciclina A/metabolismo , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Guanina/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Purinas/farmacología , Quinasa 2 Dependiente de la Ciclina , Quinasas Ciclina-Dependientes/metabolismo , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Guanina/análogos & derivados , Guanina/química , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Purinas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA