RESUMEN
The incorporation of electrically tunable materials into photonic structures such as waveguides and metasurfaces enables dynamic, electrical control of light propagation at the nanoscale. Few-layer black phosphorus is a promising material for these applications due to its in-plane anisotropic, quantum well band structure, with a direct band gap that can be tuned from 0.3 to 2 eV with a number of layers and subbands that manifest as additional optical transitions across a wide range of energies. In this Letter, we report an experimental investigation of three different, anisotropic electro-optic mechanisms that allow electrical control of the complex refractive index in few-layer black phosphorus from the mid-infrared to the visible: Pauli-blocking of intersubband optical transitions (the Burstein-Moss effect); the quantum-confined Stark effect; and the modification of quantum well selection rules by a symmetry-breaking, applied electric field. These effects generate near-unity tuning of the BP oscillator strength for some material thicknesses and photon energies, along a single in-plane crystal axis, transforming absorption from highly anisotropic to nearly isotropic. Lastly, the anisotropy of these electro-optical phenomena results in dynamic control of linear dichroism and birefringence, a promising concept for active control of the complex polarization state of light, or propagation direction of surface waves.
RESUMEN
In the version of this Perspective originally published, the titles of the references were missing; all versions have now been amended to include them.
RESUMEN
In the version of this Perspective originally published, Fig. 1 was missing the following credit line from the caption: 'Background image from ESA/Hubble (A. Fujii).' This has now been corrected in the online versions of the Perspective.
RESUMEN
We report measurements of the infrared optical response of thin black phosphorus under field-effect modulation. We interpret the observed spectral changes as a combination of an ambipolar Burstein-Moss (BM) shift of the absorption edge due to band-filling under gate control, and a quantum confined Franz-Keldysh (QCFK) effect, phenomena that have been proposed theoretically to occur for black phosphorus under an applied electric field. Distinct optical responses are observed depending on the flake thickness and starting carrier concentration. Transmission extinction modulation amplitudes of more than two percent are observed, suggesting the potential for use of black phosphorus as an active material in mid-infrared optoelectronic modulator applications.
RESUMEN
We report mid-infrared spectroscopy measurements of ultrathin, electrostatically gated (Bi1-xSbx)2Te3 topological insulator films in which we observe several percent modulation of transmittance and reflectance as gating shifts the Fermi level. Infrared transmittance measurements of gated films were enabled by use of an epitaxial lift-off method for large-area transfer of topological insulator films from infrared-absorbing SrTiO3 growth substrates to thermal oxidized silicon substrates. We combine these optical experiments with transport measurements and angle-resolved photoemission spectroscopy to identify the observed spectral modulation as a gate-driven transfer of spectral weight between both bulk and 2D topological surface channels and interband and intraband channels. We develop a model for the complex permittivity of gated (Bi1-xSbx)2Te3 and find a good match to our experimental data. These results open the path for layered topological insulator materials as a new candidate for tunable, ultrathin infrared optics and highlight the possibility of switching topological optoelectronic phenomena between bulk and spin-polarized surface regimes.
RESUMEN
The properties of polycrystalline materials are often dominated by the size of their grains and by the atomic structure of their grain boundaries. These effects should be especially pronounced in two-dimensional materials, where even a line defect can divide and disrupt a crystal. These issues take on practical significance in graphene, which is a hexagonal, two-dimensional crystal of carbon atoms. Single-atom-thick graphene sheets can now be produced by chemical vapour deposition on scales of up to metres, making their polycrystallinity almost unavoidable. Theoretically, graphene grain boundaries are predicted to have distinct electronic, magnetic, chemical and mechanical properties that strongly depend on their atomic arrangement. Yet because of the five-order-of-magnitude size difference between grains and the atoms at grain boundaries, few experiments have fully explored the graphene grain structure. Here we use a combination of old and new transmission electron microscopy techniques to bridge these length scales. Using atomic-resolution imaging, we determine the location and identity of every atom at a grain boundary and find that different grains stitch together predominantly through pentagon-heptagon pairs. Rather than individually imaging the several billion atoms in each grain, we use diffraction-filtered imaging to rapidly map the location, orientation and shape of several hundred grains and boundaries, where only a handful have been previously reported. The resulting images reveal an unexpectedly small and intricate patchwork of grains connected by tilt boundaries. By correlating grain imaging with scanning probe and transport measurements, we show that these grain boundaries severely weaken the mechanical strength of graphene membranes but do not as drastically alter their electrical properties. These techniques open a new window for studies on the structure, properties and control of grains and grain boundaries in graphene and other two-dimensional materials.
Asunto(s)
Grafito/química , Cobre , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión de Rastreo , Microscopía Electrónica de Transmisión , Tamaño de la PartículaRESUMEN
Graphene's unparalleled strength, stiffness, and low mass per unit area make it an ideal material for nanomechanical resonators, but its relatively low quality factor is an important drawback that has been difficult to overcome. Here, we use a simple procedure to fabricate circular mechanical resonators of various diameters from graphene grown by chemical vapor deposition. In addition to highly reproducible resonance frequencies and mode shapes, we observe a striking improvement of the membrane quality factor with increasing size. At room temperature, we observe quality factors as high as 2400 ± 300 for a resonator 22.5 µm in diameter, about an order of magnitude greater than previously observed quality factors for monolayer graphene. Measurements of quality factor as a function of modal frequency reveal little dependence of Q on frequency. These measurements shed light on the mechanisms behind dissipation in monolayer graphene resonators and demonstrate that the quality factor of graphene resonators relative to their thickness is among the highest of any mechanical resonator demonstrated to date.
RESUMEN
We fabricated large arrays of suspended, single-layer graphene membrane resonators using chemical vapor deposition (CVD) growth followed by patterning and transfer. We measure the resonators using both optical and electrical actuation and detection techniques. We find that the resonators can be modeled as flat membranes under tension, and that clamping the membranes on all sides improves agreement with our model and reduces the variation in frequency between identical resonators. The resonance frequency is tunable with both electrostatic gate voltage and temperature, and quality factors improve dramatically with cooling, reaching values up to 9000 at 10 K. These measurements show that it is possible to produce large arrays of CVD-grown graphene resonators with reproducible properties and the same excellent electrical and mechanical properties previously reported for exfoliated graphene.
RESUMEN
Black phosphorus (BP) offers considerable promise for infrared and visible photonics. Efficient tuning of the bandgap and higher subbands in BP by modulation of the Fermi level or application of vertical electric fields has been previously demonstrated, allowing electrical control of its above-bandgap optical properties. Here, we report modulation of the optical conductivity below the bandgap (5 to 15 µm) by tuning the charge density in a two-dimensional electron gas induced in BP, thereby modifying its free carrier-dominated intraband response. With a moderate doping density of 7 × 1012 cm-2, we were able to observe a polarization-dependent epsilon-near-zero behavior in the dielectric permittivity of BP. The intraband polarization sensitivity is intimately linked to the difference in effective fermionic masses along the two crystallographic directions, as confirmed by our measurements. Our results suggest the potential of multilayer BP to allow new optical functions for emerging photonics applications.