Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 53(3): 401-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22728218

RESUMEN

Electrophysiological maturation and integration of transplanted cardiomyocytes are essential to enhance safety and efficiency of cell replacement therapy. Yet, little is known about these important processes. The aim of our study was to perform a detailed analysis of electrophysiological maturation and integration of transplanted cardiomyocytes. Fetal cardiomyocytes expressing enhanced green fluorescent protein were transplanted into cryoinjured mouse hearts. At 6, 9 and 12 days after transplantation, viable slices of recipient hearts were prepared and action potentials of transplanted and host cardiomyocytes within the slices were recorded by microelectrodes. In transplanted cells embedded in healthy host myocardium, action potential duration at 50% repolarization (APD50) decreased from 32.2 ± 3.3 ms at day 6 to 27.9 ± 2.6 ms at day 9 and 19.6 ± 1.6 ms at day 12. The latter value matched the APD50 of host cells (20.5 ± 3.2 ms, P=0.78). Integration improved in the course of time: 26% of cells at day 6 and 53% at day 12 revealed no conduction blocks up to a stimulation frequency of 10 Hz. APD50 was inversely correlated to the quality of electrical integration. In transplanted cells embedded into the cryoinjury, which showed no electrical integration, APD50 was 49.2 ± 4.3 ms at day 12. Fetal cardiomyocytes transplanted into healthy myocardium integrate electrically and mature after transplantation, their action potential properties after 12 days are comparable to those of host cardiomyocytes. Quality of electrical integration improves over time, but conduction blocks still occur at day 12 after transplantation. The pace of maturation correlates with the quality of electrical integration. Transplanted cells embedded in cryoinjured tissue still possess immature electrophysiological properties after 12 days.


Asunto(s)
Corazón/fisiología , Miocardio/metabolismo , Miocitos Cardíacos/fisiología , Potenciales de Acción , Animales , Masculino , Ratones , Miocardio/citología , Miocitos Cardíacos/trasplante , Factores de Tiempo
2.
Cardiovasc Res ; 100(3): 432-40, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24042016

RESUMEN

AIMS: Induced pluripotent stem cell-derived cardiomyocytes (iPSCM) are regarded as promising cell type for cardiac cell replacement therapy. We investigated long-term electrophysiological integration and maturation of transplanted iPSCM, which are essential for therapeutic benefit. METHODS AND RESULTS: Murine iPSCM expressing enhanced green fluorescent protein and a puromycin resistance under control of the α-myosin heavy chain promoter were purified by antibiotic selection and injected into adult mouse hearts. After 6-12 days, 3-6 weeks, or 6-8 months, viable slices of recipient hearts were prepared. Slices were focally stimulated by a unipolar electrode placed in host tissue, and intracellular action potentials (APs) were recorded with glass microelectrodes in transplanted cells and neighbouring host tissue within the slices. Persistence and electrical integration of transplanted iPSCM into recipient hearts could be demonstrated at all time points. Quality of coupling improved, as indicated by a maximal stimulation frequency without conduction blocks of 5.77 ± 0.54 Hz at 6-12 days, 8.98 ± 0.38 Hz at 3-6 weeks and 10.82 ± 1.07 Hz at 6-8 months after transplantation. AP properties of iPSCM became more mature from 6-12 days to 6-8 months after transplantation, but still differed significantly from those of host APs. CONCLUSION: Transplanted iPSCM can persist in the long term and integrate electrically into host tissue, supporting their potential for cell replacement therapy. Quality of electrical integration improves between 6-12 days and 6-8 months after transplantation, and there are signs of an electrophysiological maturation. However, even after 6-8 months, AP properties of transplanted iPSCM differ from those of recipient cardiomyocytes.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/trasplante , Miocitos Cardíacos/trasplante , Potenciales de Acción , Animales , Línea Celular , Supervivencia Celular , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/genética , Regiones Promotoras Genéticas , Factores de Tiempo , Transfección , Miosinas Ventriculares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA