Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Med Phys ; 32(4): 932-41, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15895576

RESUMEN

The dynamic multileaf collimator (MLC) can be used for four-dimensional (4D), or tumor tracking radiotherapy. However, the leaf velocity and acceleration limitations become a crucial factor as the MLC leaves need to respond in near real time to the incoming respiration signal. The aims of this paper are to measure maximum leaf velocity, acceleration, and deceleration to obtain the mechanical response times for the MLC, and determine whether the MLC is suitable for 4D radiotherapy. MLC leaf sequence files, requiring the leaves to reach maximum acceleration and velocity during motion, were written. The leaf positions were recorded every 50 ms, from which the maximum leaf velocity, acceleration, and deceleration were derived. The dependence on the velocity and acceleration of the following variables were studied: leaf banks, inner and outer leaves, MLC-MLC variations, gravity, friction, and the stability of measurements over time. Measurement results show that the two leaf banks of a MLC behave similarly, while the inner and outer leaves have significantly different maximum leaf velocities. The MLC-MLC variations and the dependence of gravity on maximum leaf velocity are statistically significant. The average maximum leaf velocity at the isocenter plane of the MLC ranged from 3.3 to 3.9 cm/s. The acceleration and deceleration at the isocenter plane of the MLC ranged from 50 to 69 cm/s2 and 46 to 52 cm/s2, respectively. Interleaf friction had a negligible effect on the results, and the MLC parameters remained stable with time. Equations of motion were derived to determine the ability of the MLC response to fluoroscopymeasured diaphragm motion. Given the present MLC mechanical characteristics, 4D radiotherapy is feasible for up to 97% of respiratory motion. For the largest respiratory motion velocities observed, beam delivery should be temporarily stopped (beam hold).


Asunto(s)
Radioterapia Conformacional/instrumentación , Radioterapia Conformacional/métodos , Algoritmos , Desaceleración , Fricción , Gravitación , Humanos , Aceleradores de Partículas , Planificación de la Radioterapia Asistida por Computador , Respiración , Factores de Tiempo
2.
Phys Rev Lett ; 84(7): 1398-402, 2000 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-11017527

RESUMEN

The ratio of the proton's elastic electromagnetic form factors, G(E(p))/G(M(p)), was obtained by measuring P(t) and P(l), the transverse and the longitudinal recoil proton polarization, respectively. For elastic e-->p-->ep-->, G(E(p))/G(M(p)) is proportional to P(t)/P(l). Simultaneous measurement of P(t) and P(l) in a polarimeter provides good control of the systematic uncertainty. The results for the ratio G(E(p))/G(M(p)) show a systematic decrease as Q2 increases from 0.5 to 3.5 GeV2, indicating for the first time a definite difference in the spatial distribution of charge and magnetization currents in the proton.

3.
Phys Rev Lett ; 86(14): 2975-9, 2001 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-11290086

RESUMEN

We present measurements of the recoil proton polarization for the d(gamma-->,p-->)n reaction at straight theta(c.m.) = 90 degrees for photon energies up to 2.4 GeV. These are the first data in this reaction for polarization transfer with circularly polarized photons. The induced polarization p(y) vanishes above 1 GeV, contrary to meson-baryon model expectations, in which resonances lead to large polarizations. However, the polarization transfer Cx does not vanish above 1 GeV, inconsistent with hadron helicity conservation. Thus, we show that the scaling behavior observed in the d(gamma,p)n cross sections is not a result of perturbative QCD. These data should provide important tests of new nonperturbative calculations in the intermediate energy regime.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA