Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Genome Res ; 33(5): 810-823, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37308293

RESUMEN

Recombination is a key molecular mechanism that has profound implications on both micro- and macroevolutionary processes. However, the determinants of recombination rate variation in holocentric organisms are poorly understood, in particular in Lepidoptera (moths and butterflies). The wood white butterfly (Leptidea sinapis) shows considerable intraspecific variation in chromosome numbers and is a suitable system for studying regional recombination rate variation and its potential molecular underpinnings. Here, we developed a large whole-genome resequencing data set from a population of wood whites to obtain high-resolution recombination maps using linkage disequilibrium information. The analyses revealed that larger chromosomes had a bimodal recombination landscape, potentially caused by interference between simultaneous chiasmata. The recombination rate was significantly lower in subtelomeric regions, with exceptions associated with segregating chromosome rearrangements, showing that fissions and fusions can have considerable effects on the recombination landscape. There was no association between the inferred recombination rate and base composition, supporting a limited influence of GC-biased gene conversion in butterflies. We found significant but variable associations between the recombination rate and the density of different classes of transposable elements, most notably a significant enrichment of short interspersed nucleotide elements in genomic regions with higher recombination rate. Finally, the analyses unveiled significant enrichment of genes involved in farnesyltranstransferase activity in recombination coldspots, potentially indicating that expression of transferases can inhibit formation of chiasmata during meiotic division. Our results provide novel information about recombination rate variation in holocentric organisms and have particular implications for forthcoming research in population genetics, molecular/genome evolution, and speciation.


Asunto(s)
Mariposas Diurnas , Animales , Mariposas Diurnas/genética , Genoma , Genómica , Genética de Población , Recombinación Genética
2.
PLoS Genet ; 19(8): e1010717, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37549188

RESUMEN

Reshuffling of genetic variation occurs both by independent assortment of chromosomes and by homologous recombination. Such reshuffling can generate novel allele combinations and break linkage between advantageous and deleterious variants which increases both the potential and the efficacy of natural selection. Here we used high-density linkage maps to characterize global and regional recombination rate variation in two populations of the wood white butterfly (Leptidea sinapis) that differ considerably in their karyotype as a consequence of at least 27 chromosome fissions and fusions. The recombination data were compared to estimates of genetic diversity and measures of selection to assess the relationship between chromosomal rearrangements, crossing over, maintenance of genetic diversity and adaptation. Our data show that the recombination rate is influenced by both chromosome size and number, but that the difference in the number of crossovers between karyotypes is reduced as a consequence of a higher frequency of double crossovers in larger chromosomes. As expected from effects of selection on linked sites, we observed an overall positive association between recombination rate and genetic diversity in both populations. Our results also revealed a significant effect of chromosomal rearrangements on the rate of intergenic diversity change between populations, but limited effects on polymorphisms in coding sequence. We conclude that chromosomal rearrangements can have considerable effects on the recombination landscape and consequently influence both maintenance of genetic diversity and efficiency of selection in natural populations.


Asunto(s)
Aberraciones Cromosómicas , Recombinación Genética , Humanos , Polimorfismo Genético , Cariotipo
3.
Chromosome Res ; 32(2): 7, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702576

RESUMEN

Species frequently differ in the number and structure of chromosomes they harbor, but individuals that are heterozygous for chromosomal rearrangements may suffer from reduced fitness. Chromosomal rearrangements like fissions and fusions can hence serve as a mechanism for speciation between incipient lineages, but their evolution poses a paradox. How can rearrangements get fixed between populations if heterozygotes have reduced fitness? One solution is that this process predominantly occurs in small and isolated populations, where genetic drift can override natural selection. However, fixation is also more likely if a novel rearrangement is favored by a transmission bias, such as meiotic drive. Here, we investigate chromosomal transmission distortion in hybrids between two wood white (Leptidea sinapis) butterfly populations with extensive karyotype differences. Using data from two different crossing experiments, we uncover that there is a transmission bias favoring the ancestral chromosomal state for derived fusions, a result that shows that chromosome fusions actually can fix in populations despite being counteracted by meiotic drive. This means that meiotic drive not only can promote runaway chromosome number evolution and speciation, but also that it can be a conservative force acting against karyotypic change and the evolution of reproductive isolation. Based on our results, we suggest a mechanistic model for why chromosome fusion mutations may be opposed by meiotic drive and discuss factors contributing to karyotype evolution in Lepidoptera.


Asunto(s)
Mariposas Diurnas , Meiosis , Animales , Mariposas Diurnas/genética , Meiosis/genética , Hibridación Genética , Cariotipo , Cromosomas de Insectos/genética , Femenino , Masculino
4.
Ecol Lett ; 27(6): e14439, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38863401

RESUMEN

In their simulation study, Garcia-Costoya et al. (2023) conclude that evolutionary constraints might aid populations facing climate change. However, we are concerned that this conclusion is largely a consequence of the simulated temperature variation being too small, and, most importantly, that uneven limitations to standing variation disadvantage unconstrained populations.


Asunto(s)
Evolución Biológica , Cambio Climático , Simulación por Computador , Temperatura , Artefactos , Modelos Biológicos
5.
Ecol Lett ; 26(9): 1548-1558, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37366181

RESUMEN

Photoperiod is a common cue for seasonal plasticity and phenology, but climate change can create cue-environment mismatches for organisms that rely on it. Evolution could potentially correct these mismatches, but phenology often depends on multiple plastic decisions made during different life stages and seasons that may evolve separately. For example, Pararge aegeria (Speckled wood butterfly) has photoperiod-cued seasonal life history plasticity in two different life stages: larval development time and pupal diapause. We tested for climate change-associated evolution of this plasticity by replicating common garden experiments conducted on two Swedish populations 30 years ago. We found evidence for evolutionary change in the contemporary larval reaction norm-although these changes differed between populations-but no evidence for evolution of the pupal reaction norm. This variation in evolution across life stages demonstrates the need to consider how climate change affects the whole life cycle to understand its impacts on phenology.


Asunto(s)
Mariposas Diurnas , Animales , Estaciones del Año , Cambio Climático , Larva , Estadios del Ciclo de Vida
6.
J Therm Biol ; 118: 103721, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38016229

RESUMEN

Global warming has been identified as one of the main drivers of population decline in insect pollinators. One aspect of the insect life cycle that would be particularly sensitive to elevated temperatures is the developmental transition from larva to adult. Temperature-induced modifications to the development of body parts and sensory organs likely have functional consequences for adult behaviour. To date, we have little knowledge about the effect of sub-optimal temperature on the development and functional morphology of different body parts, particularly sensory organs, in ectothermic solitary pollinators such as butterflies. To address this knowledge gap, we exposed the pupae of the butterfly Pieris napi to either 23 °C or 32 °C and measured the subsequent effects on eclosion, body size and the development of the wings, proboscis, eyes and antennae. In comparison to individuals that developed at 23 °C, we found that exposure to 32 °C during the pupal stage increased mortality and decreased time to eclose. Furthermore, both female and male butterflies that developed at 32 °C were smaller and had shorter proboscides, while males had shorter antennae. In contrast, we found no significant effect of rearing temperature on wing and eye size or wing deformity. Our findings suggest that increasing global temperatures and its corresponding co-stressors, such as humidity, will impact the survival of butterflies by impairing eclosion and the proper development of body and sensory organs.


Asunto(s)
Mariposas Diurnas , Humanos , Masculino , Animales , Femenino , Mariposas Diurnas/anatomía & histología , Temperatura , Larva , Pupa , Humedad
7.
Ecol Lett ; 25(9): 2022-2033, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35965449

RESUMEN

Climate change allows species to expand polewards, but non-changing environmental features may limit expansions. Daylength is unaffected by climate and drives life cycle timing in many animals and plants. Because daylength varies over latitudes, poleward-expanding populations must adapt to new daylength conditions. We studied local adaptation to daylength in the butterfly Lasiommata megera, which is expanding northwards along several routes in Europe. Using common garden laboratory experiments with controlled daylengths, we compared diapause induction between populations from the southern-Swedish core range and recently established marginal populations from two independent expansion fronts in Sweden. Caterpillars from the northern populations entered diapause in clearly longer daylengths than those from southern populations, with the exception of caterpillars from one geographically isolated population. The northern populations have repeatedly and rapidly adapted to their local daylengths, indicating that the common use of daylength as seasonal cue need not strongly limit climate-induced insect range expansions.


Asunto(s)
Mariposas Diurnas , Animales , Señales (Psicología) , Fotoperiodo , Estaciones del Año , Temperatura
8.
Mol Ecol ; 30(2): 499-516, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33219534

RESUMEN

In a time with decreasing biodiversity, especially among insects, a detailed understanding about specific resource utilization strategies is crucial. The physiological and behavioural responses to host switches in phytophagous insects are poorly understood. Earlier studies indicate that a host plant switch might be associated with distinctive molecular and physiological responses in different lineages. Expanding the assessment of such associations across Lepidoptera will reveal if there are general patterns in adaptive responses, or if each switch event is more of a unique character. We investigated host plant preference, fitness consequences, effects on expression profiles and gut microbiome composition in two common wood white (Leptidea sinapis) populations with different host plant preferences from the extremes of the species distribution area (Sweden and Catalonia). Our results show that female Catalonian wood whites lack preference for either host plant (Lotus corniculatus or L. dorycnium), while Swedish females laid significantly more eggs on L. corniculatus. Individuals from both populations reared on L. dorycnium had longer developmental times and smaller body size as adults. This indicates that both environmental and genetic factors determine the choice to use a specific host plant. Gene expression analysis revealed a more pronounced response to host plant in the Catalonian compared to the Swedish population. In addition, host plant treatment resulted in a significant shift in microbiome community structure in the Catalonian population. Together, this suggests that population specific plasticity associated with local conditions underlies host plant utilisation in wood whites.


Asunto(s)
Mariposas Diurnas , Microbiota , Animales , Mariposas Diurnas/genética , Dieta , Femenino , Expresión Génica , Humanos , Microbiota/genética , Sinapis , Suecia , Madera
9.
Proc Natl Acad Sci U S A ; 115(41): E9610-E9619, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30266792

RESUMEN

Chromosomal rearrangements (e.g., fusions/fissions) have the potential to drive speciation. However, their accumulation in a population is generally viewed as unlikely, because chromosomal heterozygosity should lead to meiotic problems and aneuploid gametes. Canonical meiosis involves segregation of homologous chromosomes in meiosis I and sister chromatid segregation during meiosis II. In organisms with holocentric chromosomes, which are characterized by kinetic activity distributed along almost the entire chromosome length, this order may be inverted depending on their metaphase I orientation. Here we analyzed the evolutionary role of this intrinsic versatility of holocentric chromosomes, which is not available to monocentric ones, by studying F1 to F4 hybrids between two chromosomal races of the Wood White butterfly (Leptidea sinapis), separated by at least 24 chromosomal fusions/fissions. We found that these chromosomal rearrangements resulted in multiple meiotic multivalents, and, contrary to the theoretical prediction, the hybrids displayed relatively high reproductive fitness (42% of that of the control lines) and regular behavior of meiotic chromosomes. In the hybrids, we also discovered inverted meiosis, in which the first and critical stage of chromosome number reduction was replaced by the less risky stage of sister chromatid separation. We hypothesize that the ability to invert the order of the main meiotic events facilitates proper chromosome segregation and hence rescues fertility and viability in chromosomal hybrids, potentially promoting dynamic karyotype evolution and chromosomal speciation.


Asunto(s)
Mariposas Diurnas , Quimera , Cromátides , Metafase/fisiología , Animales , Mariposas Diurnas/genética , Mariposas Diurnas/metabolismo , Quimera/genética , Quimera/metabolismo , Cromátides/genética , Cromátides/metabolismo , Cromosomas de Insectos/genética , Cromosomas de Insectos/metabolismo
10.
Mol Ecol ; 28(16): 3756-3770, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31325366

RESUMEN

Genome scans in recently separated species can inform on molecular mechanisms and evolutionary processes driving divergence. Large-scale polymorphism data from multiple species pairs are also key to investigate the repeatability of divergence-whether radiations tend to show parallel responses to similar selection pressures and/or underlying molecular forces. Here, we used whole-genome resequencing data from six wood white (Leptidea sp.) butterfly populations, representing three closely related species with karyomorph variation, to infer the species' demographic history and characterize patterns of genomic diversity and differentiation. The analyses supported previously established species relationships, and there was no evidence for postdivergence gene flow. We identified significant intraspecific genetic structure, in particular between karyomorph extremes in the wood white (L. sinapis)-a species with a remarkable chromosome number cline across the distribution range. The genomic landscapes of differentiation were erratic, and outlier regions were narrow and dispersed. Highly differentiated (FST ) regions generally had low genetic diversity (θπ ), but increased absolute divergence (DXY ) and excess of rare frequency variants (low Tajima's D). A minority of differentiation peaks were shared across species and population comparisons. However, highly differentiated regions contained genes with overrepresented functions related to metabolism, response to stimulus and cellular processes, indicating recurrent directional selection on a specific set of traits in all comparisons. In contrast to the majority of genome scans in recently diverged lineages, our data suggest that divergence landscapes in Leptidea have been shaped by directional selection and genetic drift rather than stable recombination landscapes and/or introgression.


Asunto(s)
Mariposas Diurnas/genética , Flujo Génico , Especiación Genética , Genética de Población , Animales , Asia , Proteínas Bacterianas , Mariposas Diurnas/clasificación , ADN Mitocondrial/genética , Europa (Continente) , Frecuencia de los Genes , Variación Genética , Genoma , Proteínas Represoras , Selección Genética , Secuenciación Completa del Genoma
11.
Anal Biochem ; 566: 23-26, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30423321

RESUMEN

A method for analysis of proteins from spermatophores transferred from male to female Pieris napi butterflies during mating has been developed. The proteins were solubilized from the dissected spermatophores using different solubilization agents (water, methanol, acetonitrile and hexafluoroisopropanol). Capillary electrophoresis (CE) analysis was performed using an acidic background electrolyte containing a fluorosurfactant to avoid protein-wall adsorption, and to increase separation performance. The samples were also analyzed with matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS), in a lower m/z range (1000-6000) and a higher m/z range (6000-12000). Solubilization with different solvents and the use of alternative matrices gave partly complementary profiles.


Asunto(s)
Mariposas Diurnas/química , Electroforesis Capilar/métodos , Proteínas de Insectos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espermatogonias/química , Animales , Masculino , Solventes/química
12.
Mol Ecol ; 27(4): 935-948, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29411442

RESUMEN

In temperate latitudes, many insects enter diapause (dormancy) during the cold season, a period during which developmental processes come to a standstill. The wood white (Leptidea sinapis) is a butterfly species distributed across western Eurasia that shows photoperiod-induced diapause with variation in critical day-length across populations at different latitudes. We assembled transcriptomes and estimated gene expression levels at different developmental stages in experimentally induced directly developing and diapausing cohorts of a single Swedish population of L. sinapis to investigate the regulatory mechanisms underpinning diapause initiation. Different day lengths resulted in expression changes of developmental genes and affected the rate of accumulation of signal molecules, suggesting that diapause induction might be controlled by increased activity of monoamine neurotransmitters in larvae reared under short-day light conditions. Expression differences between light treatment groups of two monoamine regulator genes (DDC and ST) were observed already in instar III larvae. Once developmental pathways were irreversibly set at instar V, a handful of genes related to dopamine production were differentially expressed leading to a significant decrease in expression of global metabolic genes and increase in expression of genes related to fatty acid synthesis and sequestration. This is in line with a time-dependent (hour-glass) model of diapause regulation where a gradual shift in the concentration of monoamine neurotransmitters and their metabolites during development of larvae under short-day conditions leads to increased storage of fat, decreased energy expenditures, and ultimately developmental stasis at the pupal stage.


Asunto(s)
Mariposas Diurnas/genética , Mariposas Diurnas/fisiología , Diapausa/genética , Perfilación de la Expresión Génica , Madera , Animales , Mariposas Diurnas/efectos de la radiación , Relojes Circadianos/genética , Análisis por Conglomerados , Diapausa/efectos de la radiación , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Ontología de Genes , Luz
13.
J Exp Biol ; 221(Pt 2)2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29180603

RESUMEN

Diapause is a deep resting stage facilitating temporal avoidance of unfavourable environmental conditions, and is used by many insects to adapt their life cycle to seasonal variation. Although considerable work has been invested in trying to understand each of the major diapause stages (induction, maintenance and termination), we know very little about the transitions between stages, especially diapause termination. Understanding diapause termination is crucial for modelling and predicting spring emergence and winter physiology of insects, including many pest insects. In order to gain these insights, we investigated metabolome dynamics across diapause development in pupae of the butterfly Pieris napi, which exhibits adaptive latitudinal variation in the length of endogenous diapause that is uniquely well characterized. By employing a time-series experiment, we show that the whole-body metabolome is highly dynamic throughout diapause and differs between pupae kept at a diapause-terminating (low) temperature and those kept at a diapause-maintaining (high) temperature. We show major physiological transitions through diapause, separate temperature-dependent from temperature-independent processes and identify significant patterns of metabolite accumulation and degradation. Together, the data show that although the general diapause phenotype (suppressed metabolism, increased cold tolerance) is established in a temperature-independent fashion, diapause termination is temperature dependent and requires a cold signal. This revealed several metabolites that are only accumulated under diapause-terminating conditions and degraded in a temperature-unrelated fashion during diapause termination. In conclusion, our findings indicate that some metabolites, in addition to functioning as cryoprotectants, for example, are candidates for having regulatory roles as metabolic clocks or time-keepers during diapause.


Asunto(s)
Mariposas Diurnas/fisiología , Frío , Diapausa de Insecto/fisiología , Metaboloma , Animales , Mariposas Diurnas/crecimiento & desarrollo , Femenino , Larva/crecimiento & desarrollo , Larva/fisiología , Masculino , Pupa/crecimiento & desarrollo , Pupa/fisiología , Estaciones del Año
14.
J Anim Ecol ; 87(1): 150-161, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29048758

RESUMEN

Climate-driven changes in the relative phenologies of interacting species may potentially alter the outcome of species interactions. Phenotypic plasticity is expected to be important for short-term response to new climate conditions, and differences between species in plasticity are likely to influence their temporal overlap and interaction patterns. As reaction norms of interacting species may be locally adapted, any such climate-induced change in interaction patterns may vary among localities. However, consequences of spatial variation in plastic responses for species interactions are understudied. We experimentally explored how temperature affected synchrony between spring emergence of a butterfly, Anthocharis cardamines, and onset of flowering of five of its host plant species across a latitudinal gradient. We also studied potential effects on synchrony if climate-driven northward expansions would be faster in the butterflies than in host plants. Lastly, to assess how changes in synchrony influence host use we carried out an experiment to examine the importance of the developmental stage of plant reproductive structures for butterfly oviposition preference. In southern locations, the butterflies were well-synchronized with the majority of their local host plant species across temperatures, suggesting that thermal plasticity in butterfly development matches oviposition to host plant development and that thermal reaction norms of insects and plants result in similar advancement of spring phenology in response to warming. In the most northern region, however, relative phenology between the butterfly and two of its host plant species changed with increased temperature. We also show that the developmental stage of plants was important for egg-laying, and conclude that temperature-induced changes in synchrony in the northernmost region are likely to lead to shifts in host use in A. cardamines if spring temperatures become warmer. Northern expansion of butterfly populations might possibly have a positive effect on keeping up with host plant phenology with more northern host plant populations. Considering that the majority of insect herbivores exploit multiple plant species differing in their phenological response to spring temperatures, temperature-induced changes in synchrony might lead to shifts in host use and changes in species interactions in many temperate communities.


Asunto(s)
Mariposas Diurnas/fisiología , Cambio Climático , Ambiente , Desarrollo de la Planta/fisiología , Animales , Estaciones del Año , Suecia , Temperatura
15.
Proc Biol Sci ; 284(1849)2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28202813

RESUMEN

Reproducibility is a scientific cornerstone. Many recent studies, however, describe a reproducibility crisis and call for assessments of reproducibility across scientific domains. Here, we explore the reproducibility of a classic ecological experiment-that of assessing female host plant preference and acceptance in phytophagous insects, a group in which host specialization is a key driver of diversification. We exposed multiple cohorts of Pieris napi butterflies from the same population to traditional host acceptance and preference tests on three Brassicaceae host species. Whereas the host plant rank order was highly reproducible, the propensity to oviposit on low-ranked hosts varied significantly even among cohorts exposed to similar conditions. Much variation could be attributed to among-cohort variation in female fecundity, a trait strongly correlated both to female size and to the size of the nuptial gift a female receives during mating. Small males provide small spermatophores, and in our experiment small females that mated with small males had a disproportionally low propensity to oviposit on low-ranked hosts. Hence, our results provide empirical support to the theoretical prediction that female host utilization is strongly affected by non-genetic, environmental variation, and that such variation can affect the reproducibility of ecological experiments even under seemingly identical conditions.


Asunto(s)
Mariposas Diurnas/fisiología , Fertilidad , Animales , Brassicaceae , Femenino , Masculino , Oviposición , Reproducibilidad de los Resultados
16.
Ecology ; 98(3): 703-711, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27935643

RESUMEN

Temporal variation in natural selection has profound effects on the evolutionary trajectories of populations. One potential source of variation in selection is that differences in thermal reaction norms and temperature influence the relative phenology of interacting species. We manipulated the phenology of the butterfly herbivore Anthocharis cardamines relative to genetically identical populations of its host plant, Cardamine pratensis, and examined the effects on butterfly preferences and selection acting on the host plant. We found that butterflies preferred plants at an intermediate flowering stage, regardless of the timing of butterfly flight relative to flowering onset of the population. Consequently, the probability that plant genotypes differing in timing of flowering should experience a butterfly attack depended strongly on relative phenology. These results suggest that differences in spring temperature influence the direction of herbivore-mediated selection on flowering phenology, and that climatic conditions can influence natural selection also when phenotypic preferences remain constant.


Asunto(s)
Mariposas Diurnas/anatomía & histología , Cardamine/fisiología , Herbivoria , Fenotipo , Animales , Mariposas Diurnas/fisiología , Plantas , Reproducción
17.
J Exp Biol ; 219(Pt 19): 3049-3060, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27445351

RESUMEN

Diapause is a fundamental component of the life cycle in the majority of insects living in environments characterized by strong seasonality. The present study addresses poorly understood associations and trade-offs between endogenous diapause duration, thermal sensitivity of development, energetic cost of development and cold tolerance. Diapause intensity, metabolic rate trajectories and lipid profiles of directly developing and diapausing animals were studied using pupae and adults of Pieris napi butterflies from a population in which endogenous diapause has been well studied. Endogenous diapause was terminated after 3 months and termination required chilling. Metabolic and post-diapause development rates increased with diapause duration, while the metabolic cost of post-diapause development decreased, indicating that once diapause is terminated, development proceeds at a low rate even at low temperature. Diapausing pupae had larger lipid stores than the directly developing pupae, and lipids constituted the primary energy source during diapause. However, during diapause, lipid stores did not decrease. Thus, despite lipid catabolism meeting the low energy costs of the diapausing pupae, primary lipid store utilization did not occur until the onset of growth and metamorphosis in spring. In line with this finding, diapausing pupae contained low amounts of mitochondria-derived cardiolipins, which suggests a low capacity for fatty acid ß-oxidation. While ontogenic development had a large effect on lipid and fatty acid profiles, only small changes in these were seen during diapause. The data therefore indicate that the diapause lipidomic phenotype is developed early, when pupae are still at high temperature, and retained until post-diapause development.


Asunto(s)
Mariposas Diurnas/metabolismo , Diapausa de Insecto/fisiología , Metabolismo Energético , Metabolismo de los Lípidos , Animales , Metabolismo Basal/fisiología , Peso Corporal , Respiración de la Célula , Ácidos Grasos/análisis , Metaboloma , Metabolómica , Análisis de Componente Principal , Temperatura
18.
J Anim Ecol ; 84(6): 1690-9, 2015 11.
Artículo en Inglés | MEDLINE | ID: mdl-26114999

RESUMEN

Interactions between herbivorous insects and their host plants that are limited in time are widespread. Therefore, many insect-plant interactions result in a developmental race, where herbivores need to complete their development before plants become unsuitable, while plants strive to minimize damage from herbivores by outgrowing them. When spring phenologies of interacting species change asymmetrically in response to climate warming, there will be a change in the developmental state of host plants at the time of insect herbivore emergence. In combination with altered temperatures during the subsequent developmental period, this is likely to affect interaction strength as well as fitness of interacting species. Here, we experimentally explore whether the combined effect of phenological matching and thermal conditions influence the outcome of an insect-host interaction. We manipulated both developmental stages of the host plants at the start of the interaction and temperature during the subsequent developmental period in a model system of a herbivorous butterfly, Anthocharis cardamines, and five of its Brassicaceae host plant species. Larval performance characteristics were favoured by earlier stages of host plants at oviposition as well as by higher developmental temperatures on most of the host species. The probability of a larva needing a second host plant covered the full range from no influence of either phenological matching or temperature to strong effects of both factors, and complex interactions between them. The probability of a plant outgrowing a larva was dependent only on the species identity. This study demonstrates that climatic variation can influence the outcome of consumer-resource interactions in multiple ways and that its effects differ among host plant species. Therefore, climate warming is likely to change the temporal match between larval and plant development in some plant species, but not in the others. This is likely to have important implications for host plant use and possibly influence competitive relationships.


Asunto(s)
Brassicaceae/crecimiento & desarrollo , Mariposas Diurnas/fisiología , Cadena Alimentaria , Calentamiento Global , Herbivoria , Animales , Mariposas Diurnas/crecimiento & desarrollo , Femenino , Larva/crecimiento & desarrollo , Larva/fisiología , Oviposición , Suecia
19.
Oecologia ; 177(1): 181-90, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25362581

RESUMEN

Diapause plays a central role in insect life cycles by allowing survival during adverse seasonal conditions as well as synchronizing life cycles with the period of mate and food availability. Seasonal timing is expected to be particularly important for species that are dependent on resources available during a short time window-so-called phenological specialists-and latitudinal clines in seasonality are expected to favor local adaptation in phenological timing. However, to what degree latitudinal variation in diapause dynamics and post-winter development due to such local adaptation is influenced by the degree of phenological specialization is not well known. We experimentally studied two pierid butterfly species and found that the phenological specialist Anthocharis cardamines had shorter diapause duration than the phenological generalist Pieris napi along a latitudinal gradient in Sweden. Moreover, diapause duration increased with latitude in P. napi but not in A. cardamines. Sensitivity of the two species to winter thermal conditions also differed; additional cold temperature during the winter period shortened diapause duration for P. napi pupae but not for A. cardamines pupae. In both species, post-winter pupal development was faster after longer periods of cold conditions, and more southern populations developed faster than northern populations. Post-winter development was also invariably faster at higher temperatures in both species. We argue that the observed differences in diapause dynamics between the two species might be explained by the difference in phenological specialization that influences the costs of breaking diapause too early in the season.


Asunto(s)
Adaptación Fisiológica , Mariposas Diurnas/crecimiento & desarrollo , Frío , Pupa/crecimiento & desarrollo , Estaciones del Año , Animales , Suecia
20.
Oecologia ; 174(4): 1265-72, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24493660

RESUMEN

Spatial variation in biotic interactions and natural selection are fundamental parts of natural systems, and can be driven by differences in both trait distributions and the local environmental context of the interaction. Most studies of plant-animal interactions have been performed only in natural settings, making it difficult to disentangle the effects of traits and context. To assess the relative importance of trait differences and environmental context for among-population variation in plant resistance to herbivory, we compared oviposition by the butterfly Anthocharis cardamines on two ploidy types of the herb Cardamine pratensis under experimentally controlled conditions with oviposition in natural populations. Under controlled conditions, plants from octoploid populations were significantly more preferred than plants from tetraploid populations. This difference was largely mediated by differences in flower size. Among natural populations, there was no difference in oviposition rates between the two ploidy types. Our results suggest that differences in oviposition rates among populations of the two cytotypes in the field are caused mainly by differences in environmental context, and that the higher attractiveness of octoploids to herbivores observed under common environmental conditions is balanced by the fact that they occur in habitats which harbor lower densities of butterflies. This illustrates that spatial variation in biotic interactions is the net result of differences in trait distributions of the interacting organisms and differences in environmental context, and that variation in both traits and context are important in understanding species interactions.


Asunto(s)
Mariposas Diurnas , Cardamine/fisiología , Herbivoria , Oviposición , Animales , Cardamine/genética , Ecosistema , Femenino , Flores/fisiología , Poliploidía , Selección Genética , Análisis Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA