Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 134(4): 371-389, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38264909

RESUMEN

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a common but poorly understood form of heart failure, characterized by impaired diastolic function. It is highly heterogeneous with multiple comorbidities, including obesity and diabetes, making human studies difficult. METHODS: Metabolomic analyses in a mouse model of HFpEF showed that levels of indole-3-propionic acid (IPA), a metabolite produced by gut bacteria from tryptophan, were reduced in the plasma and heart tissue of HFpEF mice as compared with controls. We then examined the role of IPA in mouse models of HFpEF as well as 2 human HFpEF cohorts. RESULTS: The protective role and therapeutic effects of IPA were confirmed in mouse models of HFpEF using IPA dietary supplementation. IPA attenuated diastolic dysfunction, metabolic remodeling, oxidative stress, inflammation, gut microbiota dysbiosis, and intestinal epithelial barrier damage. In the heart, IPA suppressed the expression of NNMT (nicotinamide N-methyl transferase), restored nicotinamide, NAD+/NADH, and SIRT3 (sirtuin 3) levels. IPA mediates the protective effects on diastolic dysfunction, at least in part, by promoting the expression of SIRT3. SIRT3 regulation was mediated by IPA binding to the aryl hydrocarbon receptor, as Sirt3 knockdown diminished the effects of IPA on diastolic dysfunction in vivo. The role of the nicotinamide adenine dinucleotide circuit in HFpEF was further confirmed by nicotinamide supplementation, Nnmt knockdown, and Nnmt overexpression in vivo. IPA levels were significantly reduced in patients with HFpEF in 2 independent human cohorts, consistent with a protective function in humans, as well as mice. CONCLUSIONS: Our findings reveal that IPA protects against diastolic dysfunction in HFpEF by enhancing the nicotinamide adenine dinucleotide salvage pathway, suggesting the possibility of therapeutic management by either altering the gut microbiome composition or supplementing the diet with IPA.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Propionatos , Sirtuina 3 , Humanos , Ratones , Animales , Insuficiencia Cardíaca/metabolismo , Volumen Sistólico/fisiología , NAD , Sirtuina 3/genética , Indoles/farmacología , Niacinamida
2.
Eur Heart J ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842092

RESUMEN

BACKGROUND AND AIMS: The pathways and metabolites that contribute to residual cardiovascular disease risks are unclear. Low-calorie sweeteners are widely used sugar substitutes in processed foods with presumed health benefits. Many low-calorie sweeteners are sugar alcohols that also are produced endogenously, albeit at levels over 1000-fold lower than observed following consumption as a sugar substitute. METHODS: Untargeted metabolomics studies were performed on overnight fasting plasma samples in a discovery cohort (n = 1157) of sequential stable subjects undergoing elective diagnostic cardiac evaluations; subsequent stable isotope dilution liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses were performed on an independent, non-overlapping validation cohort (n = 2149). Complementary isolated human platelet, platelet-rich plasma, whole blood, and animal model studies examined the effect of xylitol on platelet responsiveness and thrombus formation in vivo. Finally, an intervention study was performed to assess the effects of xylitol consumption on platelet function in healthy volunteers (n = 10). RESULTS: In initial untargeted metabolomics studies (discovery cohort), circulating levels of a polyol tentatively assigned as xylitol were associated with incident (3-year) major adverse cardiovascular event (MACE) risk. Subsequent stable isotope dilution LC-MS/MS analyses (validation cohort) specific for xylitol (and not its structural isomers) confirmed its association with incident MACE risk [third vs. first tertile adjusted hazard ratio (95% confidence interval), 1.57 (1.12-2.21), P < .01]. Complementary mechanistic studies showed xylitol-enhanced multiple indices of platelet reactivity and in vivo thrombosis formation at levels observed in fasting plasma. In interventional studies, consumption of a xylitol-sweetened drink markedly raised plasma levels and enhanced multiple functional measures of platelet responsiveness in all subjects. CONCLUSIONS: Xylitol is associated with incident MACE risk. Moreover, xylitol both enhanced platelet reactivity and thrombosis potential in vivo. Further studies examining the cardiovascular safety of xylitol are warranted.

3.
Curr Opin Cardiol ; 39(2): 119-127, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38116785

RESUMEN

PURPOSE OF REVIEW: Worsening heart failure (WHF) has developed as a unique definition within heart failure (HF) in recent years. It captures the disease as a dynamic process. This review describes what is currently known about WHF, why it should be considered a discrete scientific endpoint, and future directions for research. RECENT FINDINGS: There is no single agreed upon definition for WHF. It can be identified as being due to treatment side-effects, related to concomitant comorbidity, or true disease progression. Risk scores based on criteria like those already developed for HF can be created to stratify risk for WHF. CONCLUSIONS: WHF is an emerging entity within HF that defines itself as a unique point of interest. Understanding it as a clinical measure of where a patient's HF is evolving allows for identifying patients that require a refreshed approach to their care. Keeping this in mind will help redefine more patient-centric outcome measures in research to come.


Asunto(s)
Insuficiencia Cardíaca , Hospitalización , Humanos , Enfermedad Aguda , Progresión de la Enfermedad , Insuficiencia Cardíaca/terapia , Evaluación de Resultado en la Atención de Salud
4.
Curr Heart Fail Rep ; 21(2): 73-80, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38300390

RESUMEN

PURPOSE OF REVIEW: This article seeks to elucidate the mechanisms underlying the bidirectional relationship between the gut and the heart, focusing on the pathophysiology of heart failure. We have previously demonstrated that Heart failure (HF) has significant effects on splanchnic vasculature and leads to key alterations in the gut microbiome, portending greater comorbidity with HF. RECENT FINDINGS: A growing field of research is focused on the effects of a "leaky gut" in the development of disease across organ systems. The leaky gut hypothesis centers on intestinal epithelial barrier dysfunction causing increased permeability of the gut and subsequent alterations to gut composition by endotoxins and microbial metabolites. Changes in the quantities of metabolites including short-chain fatty acids, trimethylamine N-oxide and other amino acid metabolites, and various bile acid species have been shown to result in gut dysbiosis and worsening HF. The gut plays a highly significant role in HF prognosis and requires greater attention for future therapeutic interventions. Treatments targeting gut composition could have very beneficial effects on HF prognosis.


Asunto(s)
Microbioma Gastrointestinal , Insuficiencia Cardíaca , Humanos , Microbioma Gastrointestinal/fisiología , Disbiosis/complicaciones
5.
Eur Heart J ; 44(22): 1979-1991, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-36879444

RESUMEN

AIMS: Iron deficiency is common in pulmonary hypertension, but its clinical significance and optimal definition remain unclear. METHODS AND RESULTS: Phenotypic data for 1028 patients enrolled in the Redefining Pulmonary Hypertension through Pulmonary Vascular Disease Phenomics study were analyzed. Iron deficiency was defined using the conventional heart failure definition and also based upon optimal cut-points associated with impaired peak oxygen consumption (peakVO2), 6-min walk test distance, and 36-Item Short Form Survey (SF-36) scores. The relationships between iron deficiency and cardiac and pulmonary vascular function and structure and outcomes were assessed. The heart failure definition of iron deficiency endorsed by pulmonary hypertension guidelines did not identify patients with reduced peakVO2, 6-min walk test, and SF-36 (P > 0.208 for all), but defining iron deficiency as transferrin saturation (TSAT) <21% did. Compared to those with TSAT ≥21%, patients with TSAT <21% demonstrated lower peakVO2 [absolute difference: -1.89 (-2.73 to -1.04) mL/kg/min], 6-min walk test distance [absolute difference: -34 (-51 to -17) m], and SF-36 physical component score [absolute difference: -2.5 (-1.3 to -3.8)] after adjusting for age, sex, and hemoglobin (all P < 0.001). Patients with a TSAT <21% had more right ventricular remodeling on cardiac magnetic resonance but similar pulmonary vascular resistance on catheterization. Transferrin saturation <21% was also associated with increased mortality risk (hazard ratio 1.63, 95% confidence interval 1.13-2.34; P = 0.009) after adjusting for sex, age, hemoglobin, and N-terminal pro-B-type natriuretic peptide. CONCLUSION: The definition of iron deficiency in the 2022 European Society of Cardiology (ESC)/European Respiratory Society (ERS) pulmonary hypertension guidelines does not identify patients with lower exercise capacity or functional status, while a definition of TSAT <21% identifies patients with lower exercise capacity, worse functional status, right heart remodeling, and adverse clinical outcomes.


Asunto(s)
Anemia Ferropénica , Insuficiencia Cardíaca , Hipertensión Pulmonar , Deficiencias de Hierro , Humanos , Anemia Ferropénica/complicaciones , Hemoglobinas , Transferrinas
6.
Eur Heart J ; 44(32): 3085-3096, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37342006

RESUMEN

AIMS: Precision microbiome modulation as a novel treatment strategy is a rapidly evolving and sought goal. The aim of this study is to determine relationships among systemic gut microbial metabolite levels and incident cardiovascular disease risks to identify gut microbial pathways as possible targets for personalized therapeutic interventions. METHODS AND RESULTS: Stable isotope dilution mass spectrometry methods to quantitatively measure aromatic amino acids and their metabolites were used to examine sequential subjects undergoing elective diagnostic cardiac evaluation in two independent cohorts with longitudinal outcome data [US (n = 4000) and EU (n = 833) cohorts]. It was also used in plasma from humans and mice before vs. after a cocktail of poorly absorbed antibiotics to suppress gut microbiota. Multiple aromatic amino acid-derived metabolites that originate, at least in part, from gut bacteria are associated with incident (3-year) major adverse cardiovascular event (MACE) risks (myocardial infarction, stroke, or death) and all-cause mortality independent of traditional risk factors. Key gut microbiota-derived metabolites associated with incident MACE and poorer survival risks include: (i) phenylacetyl glutamine and phenylacetyl glycine (from phenylalanine); (ii) p-cresol (from tyrosine) yielding p-cresol sulfate and p-cresol glucuronide; (iii) 4-OH-phenyllactic acid (from tyrosine) yielding 4-OH-benzoic acid and 4-OH-hippuric acid; (iv) indole (from tryptophan) yielding indole glucuronide and indoxyl sulfate; (v) indole-3-pyruvic acid (from tryptophan) yielding indole-3-lactic acid and indole-3-acetyl-glutamine, and (vi) 5-OH-indole-3-acetic acid (from tryptophan). CONCLUSION: Key gut microbiota-generated metabolites derived from aromatic amino acids independently associated with incident adverse cardiovascular outcomes are identified, and thus will help focus future studies on gut-microbial metabolic outputs relevant to host cardiovascular health.


Asunto(s)
Microbioma Gastrointestinal , Infarto del Miocardio , Humanos , Ratones , Animales , Aminoácidos Aromáticos/metabolismo , Triptófano , Glutamina , Glucurónidos , Indoles/metabolismo , Progresión de la Enfermedad , Tirosina
7.
Philos Trans A Math Phys Eng Sci ; 379(2210): 20200454, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34565221

RESUMEN

Atmospheric methane removal (e.g. in situ methane oxidation to carbon dioxide) may be needed to offset continued methane release and limit the global warming contribution of this potent greenhouse gas. Because mitigating most anthropogenic emissions of methane is uncertain this century, and sudden methane releases from the Arctic or elsewhere cannot be excluded, technologies for methane removal or oxidation may be required. Carbon dioxide removal has an increasingly well-established research agenda and technological foundation. No similar framework exists for methane removal. We believe that a research agenda for negative methane emissions-'removal' or atmospheric methane oxidation-is needed. We outline some considerations for such an agenda here, including a proposed Methane Removal Model Intercomparison Project (MR-MIP). This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'.

8.
Curr Diab Rep ; 20(12): 75, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33231788

RESUMEN

PURPOSE OF REVIEW: Obesity increases the risk of new onset heart failure (HF), and particularly HF with preserved ejection fraction (HFpEF). Despite the observations of favorable clinical outcomes in HF patients with obesity in general, sometimes referred to as the "obesity paradox," it is important to recognize that severe obesity is associated with worse clinical outcomes. This review summarizes the effects of obesity treatment on cardiovascular health and HF clinical outcomes. RECENT FINDINGS: Treatment for obesity utilizes a variety of modalities to achieve purposeful weight loss including lifestyle intervention, medications, and bariatric surgery. There are a cluster of benefits of obesity treatment in terms of clinical outcomes in HF. The mechanisms of these benefits include both weight loss-dependent and weight loss-independent mechanisms. Obesity treatment is safe and associated with favorable clinical outcomes across the spectrum of the HF population. The potential benefits are facilitated through multiple mechanisms.


Asunto(s)
Insuficiencia Cardíaca , Pérdida de Peso , Índice de Masa Corporal , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/terapia , Humanos , Obesidad/complicaciones , Obesidad/terapia , Sobrepeso , Volumen Sistólico
9.
Environ Sci Technol ; 54(12): 7524-7532, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32432460

RESUMEN

The industrial sector represents roughly 22% of U.S. emissions. Unlike emissions from fossil-fueled power plants, the carbon footprint of the industrial sector represents a complex mixture of stationary combustion and process emissions produced as a reaction byproduct of cement, iron and steel, glass, and oil production. This study quantifies the potential opportunities for low-cost carbon capture and storage (CCS) scenarios with process emissions from the U.S. industrial sector by analyzing the variabilities in point-source capture and geographic proximity to relevant sinks, specifically enhanced oil recovery (EOR) and geologic sequestration opportunities. Using a technology-agnostic cost model developed from mature CO2 capture technologies, costs of CCS are calculated for each of the 656 facilities considered, with application of the U.S. federal tax credit 45Q to qualifying facilities. Capture of these targeted industrial process emission streams may lead to the avoidance of roughly 195 MtCO2/yr (188 MtCO2/yr qualifying for 45Q). A total of 123 facilities have the potential to avoid roughly 68.5 MtCO2/yr at costs below $40/tCO2 delivered. This could be competitive for using CO2 for EOR depending on the price of oil. At regional CO2 collection hubs, emissions of 40 MtCO2/yr can be avoided within 100 miles of the existing Louisiana-Mississippi and Texas-New Mexico pipelines.


Asunto(s)
Secuestro de Carbono , Carbono , Dióxido de Carbono/análisis , Louisiana , Mississippi , New Mexico , Texas
10.
Environ Sci Technol ; 54(10): 6272-6280, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32329614

RESUMEN

Despite increasing efforts to decarbonize the power sector, the utilization of natural gas-fired power plants is anticipated to continue. This study models existing solvent-based carbon capture technologies on natural gas-fired power plants, using site-specific emissions and regionally defined cost parameters to calculate the cost of CO2 avoided for two scenarios: delivery to and injection within reliable sequestration sites, and delivery and injection for the purpose of CO2-enhanced oil recovery (EOR). Despite the application of credits from the existing federal tax code 45Q, a minimum incentive gap of roughly $38/tCO2 remains for the geologic sequestration of CO2 and $56/tCO2 for CO2-EOR (before consideration of revenue generated from delivered CO2 contracts). At full escalation of 45Q, delivered CO2 costs from this sector for geologic sequestration could reach as low as $22/tCO2. However, given the capital investment required in the near-term, it would be beneficial if the credit provided the greatest economic benefit early on and decreasing over time as deployment continues to ramp up. Additionally, due to the high qualifying limit of 45Q for the power sector, e.g., 500 ktCO2/yr, the tax credit incentivizes the capture of roughly 397 MtCO2/yr at a 90% capture efficiency or 75% of the emissions in this sector, with missed opportunities equating to roughly 118 MtCO2. Advancing the scale of carbon capture and sequestration (CCS) will require both technological advances in the capture technology, cost reductions through the leveraging of existing infrastructure, and increased policy incentives in terms of cost along with the reduction of qualifying limits.


Asunto(s)
Secuestro de Carbono , Gas Natural , Carbono , Dióxido de Carbono/análisis , Centrales Eléctricas
11.
Environ Sci Technol ; 54(12): 7542-7551, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32412237

RESUMEN

Negative emissions technologies will play an important role in preventing 2 °C warming by 2100. The next decade is critical for technological innovation and deployment to meet mid-century carbon removal goals of 10-20 GtCO2/yr. Direct air capture (DAC) is positioned to play a critical role in carbon removal, yet remains under paced in deployment efforts, mainly because of high costs. This study outlines a roadmap for DAC cost reductions through the exploitation of low-temperature heat, recent U.S. policy drivers, and logical, regional end-use opportunities in the United States. Specifically, two scenarios are identified that allow for the production of compressed high-purity CO2 for costs ≤$300/tCO2, net delivered with an opportunity to scale to 19 MtCO2/yr. These scenarios use thermal energy from geothermal and nuclear power plants to produce steam and transport the purified CO2 via trucks to the nearest opportunity for direct use or subsurface permanent storage. Although some utilization pathways result in the re-emission of CO2 and cannot be considered true carbon removal, they would provide economic incentive to deploying DAC plants at scale by mid-century. In addition, the federal tax credit 45Q was applied for qualifying facilities (i.e., producing ≥100 ktCO2/yr).


Asunto(s)
Dióxido de Carbono , Carbono , Dióxido de Carbono/análisis , Secuestro de Carbono , Costos y Análisis de Costo , Calor , Estados Unidos
12.
Acc Chem Res ; 50(8): 1818-1828, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28762725

RESUMEN

Over the past decade, the United States has become a world leader in natural gas production, thanks in part to a large-fold increase in recovery from unconventional resources, i.e., shale rock and tight oil reservoirs. In an attempt to help mitigate climate change, these depleted formations are being considered for their long-term CO2 storage potential. Because of the variability in mineral and structural composition from one formation to the next (even within the same region), it is imperative to understand the adsorption behavior of CH4 and CO2 in the context of specific conditions and pore surface chemistry, i.e., relative total organic content (TOC), clay, and surface functionality. This study examines two Eagle Ford shale samples, both recovered from shale that was extracted at depths of approximately 3800 m and having low clay content (i.e., less than 5%) and similar mineral compositions but distinct TOCs (i.e., 2% and 5%, respectively). Experimentally validated models of kerogen were used to the estimate CH4 and CO2 adsorption capacities. The pore size distributions modeled were derived from low-pressure adsorption isotherm data using CO2 and N2 as probe gases for micropores and mesopores, respectively. Given the presence of water in these natural systems, the role of surface chemistry on modeled kerogen pore surfaces was investigated. Several functional groups associated with surface-dissociated water were considered. Pressure conditions from 10 to 50 bar were investigated using grand canonical Monte Carlo simulations along with typical outgassing temperatures used in many shale characterization and adsorption studies (i.e., 60 and 250 °C). Both CO2 and N2 were used as probe gases to determine the total pore volume available for gas adsorption spanning pore diameters ranging from 0.3 to 30 nm. The impacts of surface chemistry, outgassing temperature, and the inclusion of nanopores with diameters of less than 1.5 nm were determined for applications of CH4 and CO2 storage from samples of the gas-producing region of the Eagle Ford Shale. At 50 bar and temperatures of 60 and 250 °C, CH4 adsorption increased across all surface chemistries considered by 60% and 2-fold, respectively. In the case of CO2, the surface chemistry played a role at both 10 and 50 bar. For instance, at temperatures of 60 and 250 °C, CO2 adsorption increased across all surface chemistries by 6-fold and just over 2-fold, respectively. It was also found that at both 10 and 50 bar, if too low an outgassing temperature is used, this may lead to a 2-fold underestimation of gas in place. Finally, neglecting to include pores with diameters of less than 1.5 nm has the potential to underestimate pore volume by up to 28%. Taking into consideration these aspects of kerogen and shale characterization in general will lead to improvements in estimating the CH4 and CO2 storage potential of gas shales.

13.
Langmuir ; 33(38): 9521-9529, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28026956

RESUMEN

Molybdenum (Mo) thin films (thickness <100 nm) were physically deposited by e-beam evaporation on a porous alumina substrate and were analyzed for their stability and reactivity under various thermal and gas conditions. The Mo thin-film composites were stable below 300 °C but had no reactivity toward gases. Mo thin films showed nitrogen incorporation on the surface as well as in the subsurface at 450 °C, as confirmed by X-ray photoelectron spectroscopy. The reactivity toward nitrogen was diminished in the presence of CO2, although no carbon species were detected either on the surface or in the subsurface. The Mo thin films have a very stable native oxide layer, which may further oxidize to higher oxidation states above 500 °C due to the reaction with the porous anodized alumina substrate. The oxidation of Mo thin films was accelerated in the presence of oxidizing gases. At 600 °C in N2, the Mo thin film on anodized alumina was completely oxidized and may also have been volatilized. The results imply that choosing thermally stable and inactive porous supports and operating in nonoxidizing conditions below 500 °C will likely maintain the stability of the Mo composite. This study provides key information about the chemical and structural stability of a Mo thin film on a porous substrate for future membrane applications and offers further insights into the integrity of thin-film composites when exposed to harsh conditions.

14.
Environ Sci Technol ; 51(19): 11440-11449, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28858476

RESUMEN

The fabrication and manufacturing processes of industrial commodities such as iron, glass, and cement are carbon-intensive, accounting for 23% of global CO2 emissions. As a climate mitigation strategy, CO2 capture from flue gases of industrial processes-much like that of the power sector-has not experienced wide adoption given its high associated costs. However, some industrial processes with relatively high CO2 flue concentration may be viable candidates to cost-competitively supply CO2 for utilization purposes (e.g., polymer manufacturing, etc.). This work develops a methodology that determines the levelized cost ($/tCO2) of separating, compressing, and transporting carbon dioxide. A top-down model determines the cost of separating and compressing CO2 across 18 industrial processes. Further, the study calculates the cost of transporting CO2 via pipeline and tanker truck to appropriately paired sinks using a bottom-up cost model and geo-referencing approach. The results show that truck transportation is generally the low-cost alternative given the relatively small volumes (ca. 100 kt CO2/a). We apply our methodology to a regional case study in Pennsylvania, which shows steel and cement manufacturing paired to suitable sinks as having the lowest levelized cost of capture, compression, and transportation.


Asunto(s)
Secuestro de Carbono , Industrias , Carbono , Dióxido de Carbono , Pennsylvania
15.
Environ Sci Technol ; 51(19): 11459-11467, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28910081

RESUMEN

Vanadium and its surface oxides were studied as a potential nitrogen-selective membrane material for indirect carbon capture from coal or natural gas power plants. The effects of minor flue gas components (SO2, NO, NO2, H2O, and O2) on vanadium at 500-600 °C were investigated by thermochemical exposure in combination with X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and in situ X-ray diffraction (XRD). The results showed that SO2, NO, and NO2 are unlikely to have adsorbed on the surface vanadium oxides at 600 °C after exposure for up to 10 h, although NO and NO2 may have exhibited oxidizing effects (e.g., exposure to 250 ppmv NO/N2 resulted in an 2.4 times increase in surface V2O5 compared to exposure to just N2). We hypothesize that decomposition of surface vanadium oxides and diffusion of surface oxygen into the metal bulk are both important mechanisms affecting the composition and morphology of the vanadium membrane. The results and hypothesis suggest that the carbon capture performance of the vanadium membrane can potentially be strengthened by material and process improvements such as alloying, operating temperature reduction, and flue gas treatment.


Asunto(s)
Secuestro de Carbono , Vanadio , Carbono , Carbón Mineral , Centrales Eléctricas , Difracción de Rayos X
16.
Phys Chem Chem Phys ; 19(7): 5495-5503, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28165069

RESUMEN

The current CO2 utilization market is dominated by enhanced oil recovery and urea manufacturing; yet, the scale of demand falls well short of that deemed necessary to make a significant impact on climate change. CO2 conversion to fuels, however, is a utilization technology that can theoretically match the scale of projected CO2 capture. Fischer-Tröpsch (FT) processing is a long-established technology for converting non-petroleum based precursors into transportation fuels and other valuable chemicals. Here, we report the effects of Pd and Ag doping on CH4 selectivity over Fe(100), a common FT catalyst, as these metals have shown potential in the direct conversion of co-fed CO2. Adsorption energies for pathway specific C1 and C2 species were weakened in the presence of Ag and Pd by ca. 0.55 eV and 0.35 eV, respectively. Further, while both Ag- and Pd-promoted surfaces show decreased CH4 production, Ag introduces a prohibitively high coupling barrier; thus, only Pd offered a decrease in CH4 selectivity (-36%) relative to unmodified Fe(100).

17.
J Am Chem Soc ; 138(3): 1001-9, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26717034

RESUMEN

Carbon capture and sequestration from point sources is an important component in the CO2 emission mitigation portfolio. In particular, sorbents with both high capacity and selectivity are required for reducing the cost of carbon capture. Although physisorbents have the advantage of low energy consumption for regeneration, it remains a challenge to obtain both high capacity and sufficient CO2/N2 selectivity at the same time. Here, we report the controlled synthesis of a novel N-doped hierarchical carbon that exhibits record-high Henry's law CO2/N2 selectivity among physisorptive carbons while having a high CO2 adsorption capacity. Specifically, our synthesis involves the rational design of a modified pyrrole molecule that can co-assemble with the soft Pluronic template via hydrogen bonding and electrostatic interactions to give rise to mesopores followed by carbonization. The low-temperature carbonization and activation processes allow for the development of ultrasmall pores (d < 0.5 nm) and preservation of nitrogen moieties, essential for enhanced CO2 affinity. Furthermore, our described work provides a strategy to initiate developments of rationally designed porous conjugated polymer structures and carbon-based materials for various potential applications.

18.
Phys Chem Chem Phys ; 18(41): 28747-28758, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27722315

RESUMEN

A present challenge in the mitigation of anthropogenic CO2 emissions involves the design of less energy- and water-intensive capture technologies. Sorbent-based capture represents a promising solution, as these materials have negligible water requirements and do not incur the heavy energy penalties associated with solvent regeneration. However, to be considered competitive with traditional technologies (i.e., MEA capture), these sorbents must exhibit a high CO2 loading capacity and high CO2/N2 selectivity. It has been reported that ultramicroporous character and surface nitrogen functionality are of great importance to the enhancement of CO2 capacity and CO2/N2 selectivity. However, the role of pore size in combination with surface functionality in the enhancement of these properties remains unclear. To investigate these effects, grand canonical Monte Carlo (GCMC) simulations were carried out on pure and N-functionalized 3-layer graphitic slit-pore models and compared to experimental results for two high performing materials reported elsewhere. We show that the quaternary, pyridinic, and especially the oxidized pyridinic group lend to enhanced performance, with the latter providing exceptional CO2 loading (4.31 mmol g-1) and CO2/N2 selectivity (138.3 : 1). Increasing surface nitrogen content resulted in enhanced loading and excellent CO2/N2 selectivity (45.8 : 1-55.9 : 1), provided that the sorbent has significant ultramicroporous character. Additionally, we elucidate a threshold pore width, under which N-functionalization becomes increasingly influential on performance parameters, and show how this threshold changes with application (PC vs. NGCC capture). Finally, we propose that an alternative functionality - the nitroso group - may be responsible for the enhanced performance of some recent materials reported in the literature.

19.
Molecules ; 21(5)2016 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-27171067

RESUMEN

A supported Pd-Au (Au 7wt%) membrane was produced by electroless plating deposition. Permeation tests were performed with pure gas (H2, H2, N2, CO2, CH4) for long time operation. After around 400 h under testing, the composite Pd-Au membrane achieved steady state condition, with an H2/N2 ideal selectivity of around 500 at 420 °C and 50 kPa as transmembrane pressure, remaining stable up to 1100 h under operation. Afterwards, the membrane was allocated in a membrane reactor module for methane steam reforming reaction tests. As a preliminary application, at 420 °C, 300 kPa of reaction pressure, space velocity of 4100 h(-1), 40% methane conversion and 35% hydrogen recovery were reached using a commercial Ni/Al2O3 catalyst. Unfortunately, a severe coke deposition affected irreversibly the composite membrane, determining the loss of the hydrogen permeation characteristics of the supported Pd-Au membrane.


Asunto(s)
Oro/química , Hidrógeno/química , Paladio/química , Metano/química , Vapor , Propiedades de Superficie
20.
Phys Chem Chem Phys ; 16(24): 12299-306, 2014 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-24820239

RESUMEN

Doping nanowires (NWs) is of crucial importance for a range of applications due to the unique properties arising from both impurities' incorporation and nanoscale dimensions. However, existing doping methods face the challenge of simultaneous control over the morphology, crystallinity, dopant distribution and concentration at the nanometer scale. Here, we present a controllable and reliable method, which combines versatile solution phase chemistry and rapid flame annealing process (sol-flame), to dope TiO2 NWs with cobalt (Co). The sol-flame doping method not only preserves the morphology and crystallinity of the TiO2 NWs, but also allows fine control over the Co dopant profile by varying the concentration of Co precursor solution. Characterizations of the TiO2:Co NWs show that Co dopants exhibit 2+ oxidation state and substitutionally occupy Ti sites in the TiO2 lattice. The Co dopant concentration significantly affects the oxygen evolution reaction (OER) activity of TiO2:Co NWs, and the TiO2:Co NWs with 12 at% of Co on the surface show the highest OER activity with a 0.76 V reduction of the overpotential with respect to undoped TiO2 NWs. This enhancement of OER activity for TiO2:Co NWs is attributed to both improved surface charge transfer kinetics and increased bulk conductivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA