Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 583(7814): 115-121, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32528180

RESUMEN

The advent of endothermy, which is achieved through the continuous homeostatic regulation of body temperature and metabolism1,2, is a defining feature of mammalian and avian evolution. However, when challenged by food deprivation or harsh environmental conditions, many mammalian species initiate adaptive energy-conserving survival strategies-including torpor and hibernation-during which their body temperature decreases far below its homeostatic set-point3-5. How homeothermic mammals initiate and regulate these hypothermic states remains largely unknown. Here we show that entry into mouse torpor, a fasting-induced state with a greatly decreased metabolic rate and a body temperature as low as 20 °C6, is regulated by neurons in the medial and lateral preoptic area of the hypothalamus. We show that restimulation of neurons that were activated during a previous bout of torpor is sufficient to initiate the key features of torpor, even in mice that are not calorically restricted. Among these neurons we identify a population of glutamatergic Adcyap1-positive cells, the activity of which accurately determines when mice naturally initiate and exit torpor, and the inhibition of which disrupts the natural process of torpor entry, maintenance and arousal. Taken together, our results reveal a specific neuronal population in the mouse hypothalamus that serves as a core regulator of torpor. This work forms a basis for the future exploration of mechanisms and circuitry that regulate extreme hypothermic and hypometabolic states, and enables genetic access to monitor, initiate, manipulate and study these ancient adaptations of homeotherm biology.


Asunto(s)
Metabolismo Energético/fisiología , Hipotálamo/citología , Vías Nerviosas/fisiología , Neuronas/fisiología , Letargo/fisiología , Animales , Ayuno , Femenino , Privación de Alimentos , Glutamina/metabolismo , Hipotálamo/fisiología , Masculino , Ratones , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo
2.
Elife ; 82019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31545165

RESUMEN

Enhancers are the primary DNA regulatory elements that confer cell type specificity of gene expression. Recent studies characterizing individual enhancers have revealed their potential to direct heterologous gene expression in a highly cell-type-specific manner. However, it has not yet been possible to systematically identify and test the function of enhancers for each of the many cell types in an organism. We have developed PESCA, a scalable and generalizable method that leverages ATAC- and single-cell RNA-sequencing protocols, to characterize cell-type-specific enhancers that should enable genetic access and perturbation of gene function across mammalian cell types. Focusing on the highly heterogeneous mammalian cerebral cortex, we apply PESCA to find enhancers and generate viral reagents capable of accessing and manipulating a subset of somatostatin-expressing cortical interneurons with high specificity. This study demonstrates the utility of this platform for developing new cell-type-specific viral reagents, with significant implications for both basic and translational research.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Biología Molecular/métodos , Neuronas/efectos de los fármacos , Neurofisiología/métodos , Proteínas Recombinantes/biosíntesis , Somatostatina/metabolismo , Virus/genética , Animales , Animales Modificados Genéticamente , Corteza Cerebral/fisiología , Genes Reguladores , Vectores Genéticos , Interneuronas/fisiología , Ratones , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA