Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 40(6): e105543, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33586810

RESUMEN

Influenza A virus (IAV) and SARS-CoV-2 (COVID-19) cause pandemic infections where cytokine storm syndrome and lung inflammation lead to high mortality. Given the high social and economic cost of respiratory viruses, there is an urgent need to understand how the airways defend against virus infection. Here we use mice lacking the WD and linker domains of ATG16L1 to demonstrate that ATG16L1-dependent targeting of LC3 to single-membrane, non-autophagosome compartments - referred to as non-canonical autophagy - protects mice from lethal IAV infection. Mice with systemic loss of non-canonical autophagy are exquisitely sensitive to low-pathogenicity IAV where extensive viral replication throughout the lungs, coupled with cytokine amplification mediated by plasmacytoid dendritic cells, leads to fulminant pneumonia, lung inflammation and high mortality. IAV was controlled within epithelial barriers where non-canonical autophagy reduced IAV fusion with endosomes and activation of interferon signalling. Conditional mouse models and ex vivo analysis showed that protection against IAV infection of lung was independent of phagocytes and other leucocytes. This establishes non-canonical autophagy in airway epithelial cells as a novel innate defence that restricts IAV infection and lethal inflammation at respiratory surfaces.


Asunto(s)
Proteínas Relacionadas con la Autofagia/genética , Virus de la Influenza A/patogenicidad , Proteínas Asociadas a Microtúbulos/metabolismo , Infecciones por Orthomyxoviridae/genética , Eliminación de Secuencia , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/virología , Animales , Autofagia , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/metabolismo , Embrión de Pollo , Citocinas/metabolismo , Perros , Células de Riñón Canino Madin Darby , Ratones , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/mortalidad , Dominios Proteicos , Replicación Viral
2.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37895005

RESUMEN

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystemic disease of unknown aetiology that is characterised by disabling chronic fatigue and involves both the immune and gastrointestinal (GI) systems. Patients display alterations in GI microbiome with a significant proportion experiencing GI discomfort and pain and elevated blood biomarkers for altered intestinal permeability compared with healthy individuals. To investigate a possible GI origin of ME/CFS we designed a feasibility study to test the hypothesis that ME/CFS pathogenesis is a consequence of increased intestinal permeability that results in microbial translocation and a breakdown in immune tolerance leading to generation of antibodies reactive to indigenous intestinal microbes. Secretory immunoglobulin (Ig) A and serum IgG levels and reactivity to intestinal microbes were assessed in five pairs of severe ME/CFS patients and matched same-household healthy controls. For profiling serum IgG, we developed IgG-Seq which combines flow-cytometry based bacterial cell sorting and metagenomics to detect mucosal IgG reactivity to the microbiome. We uncovered evidence for immune dysfunction in severe ME/CFS patients that was characterised by reduced capacity and reactivity of serum IgG to stool microbes, irrespective of their source. This study provides the rationale for additional studies in larger cohorts of ME/CFS patients to further explore immune-microbiome interactions.


Asunto(s)
Síndrome de Fatiga Crónica , Microbioma Gastrointestinal , Humanos , Estudios de Factibilidad , Bacterias , Inmunoglobulina G
3.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139096

RESUMEN

Understanding how the human virome, and which of its constituents, contributes to health or disease states is reliant on obtaining comprehensive virome profiles. By combining DNA viromes from isolated virus-like particles (VLPs) and whole metagenomes from the same faecal sample of a small cohort of healthy individuals and patients with severe myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), we have obtained a more inclusive profile of the human intestinal DNA virome. Key features are the identification of a core virome comprising tailed phages of the class Caudoviricetes, and a greater diversity of DNA viruses including extracellular phages and integrated prophages. Using an in silico approach, we predicted interactions between members of the Anaerotruncus genus and unique viruses present in ME/CFS microbiomes. This study therefore provides a framework and rationale for studies of larger cohorts of patients to further investigate disease-associated interactions between the intestinal virome and the bacteriome.


Asunto(s)
Síndrome de Fatiga Crónica , Humanos , Viroma , Interacciones Microbiota-Huesped , ADN
4.
EMBO J ; 37(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29317426

RESUMEN

A hallmark of macroautophagy is the covalent lipidation of LC3 and insertion into the double-membrane phagophore, which is driven by the ATG16L1/ATG5-ATG12 complex. In contrast, non-canonical autophagy is a pathway through which LC3 is lipidated and inserted into single membranes, particularly endolysosomal vacuoles during cell engulfment events such as LC3-associated phagocytosis. Factors controlling the targeting of ATG16L1 to phagophores are dispensable for non-canonical autophagy, for which the mechanism of ATG16L1 recruitment is unknown. Here we show that the WD repeat-containing C-terminal domain (WD40 CTD) of ATG16L1 is essential for LC3 recruitment to endolysosomal membranes during non-canonical autophagy, but dispensable for canonical autophagy. Using this strategy to inhibit non-canonical autophagy specifically, we show a reduction of MHC class II antigen presentation in dendritic cells from mice lacking the WD40 CTD Further, we demonstrate activation of non-canonical autophagy dependent on the WD40 CTD during influenza A virus infection. This suggests dependence on WD40 CTD distinguishes between macroautophagy and non-canonical use of autophagy machinery.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas Portadoras/fisiología , Membranas Intracelulares/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Repeticiones WD40 , Animales , Presentación de Antígeno , Proteínas Relacionadas con la Autofagia/genética , Células Cultivadas , Fosfatidilinositol 3-Quinasas Clase III/genética , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Células Dendríticas/metabolismo , Endosomas/metabolismo , Femenino , Humanos , Virus de la Influenza A/aislamiento & purificación , Gripe Humana/metabolismo , Gripe Humana/patología , Gripe Humana/virología , Lisosomas/metabolismo , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética
5.
BMC Biol ; 19(1): 191, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493269

RESUMEN

BACKGROUND: Antimicrobial resistance (AMR) is among the gravest threats to human health and food security worldwide. The use of antimicrobials in livestock production can lead to emergence of AMR, which can have direct effects on humans through spread of zoonotic disease. Pigs pose a particular risk as they are a source of zoonotic diseases and receive more antimicrobials than most other livestock. Here we use a large-scale genomic approach to characterise AMR in Streptococcus suis, a commensal found in most pigs, but which can also cause serious disease in both pigs and humans. RESULTS: We obtained replicated measures of Minimum Inhibitory Concentration (MIC) for 16 antibiotics, across a panel of 678 isolates, from the major pig-producing regions of the world. For several drugs, there was no natural separation into 'resistant' and 'susceptible', highlighting the need to treat MIC as a quantitative trait. We found differences in MICs between countries, consistent with their patterns of antimicrobial usage. AMR levels were high even for drugs not used to treat S. suis, with many multidrug-resistant isolates. Similar levels of resistance were found in pigs and humans from regions associated with zoonotic transmission. We next used whole genome sequences for each isolate to identify 43 candidate resistance determinants, 22 of which were novel in S. suis. The presence of these determinants explained most of the variation in MIC. But there were also interesting complications, including epistatic interactions, where known resistance alleles had no effect in some genetic backgrounds. Beta-lactam resistance involved many core genome variants of small effect, appearing in a characteristic order. CONCLUSIONS: We present a large dataset allowing the analysis of the multiple contributing factors to AMR in S. suis. The high levels of AMR in S. suis that we observe are reflected by antibiotic usage patterns but our results confirm the potential for genomic data to aid in the fight against AMR.


Asunto(s)
Streptococcus suis , Animales , Antibacterianos/farmacología , Antiinfecciosos , Farmacorresistencia Bacteriana/genética , Genómica , Pruebas de Sensibilidad Microbiana , Preparaciones Farmacéuticas , Streptococcus suis/efectos de los fármacos , Streptococcus suis/genética , Porcinos
6.
J Gen Virol ; 102(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34406116

RESUMEN

African swine fever is a devastating disease of domestic swine and wild boar caused by a large double-stranded DNA virus that encodes for more than 150 open reading frames. There is no licensed vaccine for the disease and the most promising current candidates are modified live viruses that have been attenuated by deletion of virulence factors. Like many viruses African swine fever virus significantly alters the host cell machinery to benefit its replication and viral genes that modify host pathways represent promising targets for development of gene deleted vaccines. Autophagy is an important cellular pathway that is involved in cellular homeostasis, innate and adaptive immunity and therefore is manipulated by a number of different viruses. Autophagy is regulated by a complex protein cascade and here we show that African swine fever virus can block formation of autophagosomes, a critical functional step of the autophagy pathway through at least two different mechanisms. Interestingly this does not require the A179L gene that has been shown to interact with Beclin-1, an important autophagy regulator.


Asunto(s)
Virus de la Fiebre Porcina Africana/patogenicidad , Fiebre Porcina Africana/virología , Proteínas Virales/metabolismo , Animales , Autofagia , Chlorocebus aethiops , Porcinos , Células Vero , Virulencia
7.
Nucleic Acids Res ; 46(21): 11466-11476, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30304532

RESUMEN

Streptococcus suis is a major pathogen of swine, responsible for a number of chronic and acute infections, and is also emerging as a major zoonotic pathogen, particularly in South-East Asia. Our study of a diverse population of S. suis shows that this organism contains both Type I and Type III phase-variable methyltransferases. In all previous examples, phase-variation of methyltransferases results in genome wide methylation differences, and results in differential regulation of multiple genes, a system known as the phasevarion (phase-variable regulon). We hypothesized that each variant in the Type I and Type III systems encoded a methyltransferase with a unique specificity, and could therefore control a distinct phasevarion, either by recombination-driven shuffling between different specificities (Type I) or by biphasic on-off switching via simple sequence repeats (Type III). Here, we present the identification of the target specificities for each Type III allelic variant from S. suis using single-molecule, real-time methylome analysis. We demonstrate phase-variation is occurring in both Type I and Type III methyltransferases, and show a distinct association between methyltransferase type and presence, and population clades. In addition, we show that the phase-variable Type I methyltransferase was likely acquired at the origin of a highly virulent zoonotic sub-population.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Metiltransferasas/genética , Regulón , Streptococcus suis/enzimología , Alelos , Animales , Metilación de ADN , Metilasas de Modificación del ADN/metabolismo , ADN Bacteriano/metabolismo , Epigénesis Genética , Escherichia coli , Variación Genética , Genoma Bacteriano , Repeticiones de Microsatélite , Oligonucleótidos/genética , Fenotipo , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/veterinaria , Streptococcus suis/genética , Porcinos
8.
Genome Res ; 26(1): 130-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26560630

RESUMEN

We have generated an improved assembly and gene annotation of the pig X Chromosome, and a first draft assembly of the pig Y Chromosome, by sequencing BAC and fosmid clones from Duroc animals and incorporating information from optical mapping and fiber-FISH. The X Chromosome carries 1033 annotated genes, 690 of which are protein coding. Gene order closely matches that found in primates (including humans) and carnivores (including cats and dogs), which is inferred to be ancestral. Nevertheless, several protein-coding genes present on the human X Chromosome were absent from the pig, and 38 pig-specific X-chromosomal genes were annotated, 22 of which were olfactory receptors. The pig Y-specific Chromosome sequence generated here comprises 30 megabases (Mb). A 15-Mb subset of this sequence was assembled, revealing two clusters of male-specific low copy number genes, separated by an ampliconic region including the HSFY gene family, which together make up most of the short arm. Both clusters contain palindromes with high sequence identity, presumably maintained by gene conversion. Many of the ancestral X-related genes previously reported in at least one mammalian Y Chromosome are represented either as active genes or partial sequences. This sequencing project has allowed us to identify genes--both single copy and amplified--on the pig Y Chromosome, to compare the pig X and Y Chromosomes for homologous sequences, and thereby to reveal mechanisms underlying pig X and Y Chromosome evolution.


Asunto(s)
Cromosomas de los Mamíferos/genética , Evolución Molecular , Porcinos/genética , Cromosoma X/genética , Cromosoma Y/genética , Animales , Secuencia de Bases , Gatos/genética , Perros/genética , Femenino , Conversión Génica , Expresión Génica , Biblioteca de Genes , Orden Génico , Humanos , Masculino , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de ADN
9.
J Clin Microbiol ; 57(7)2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30944194

RESUMEN

Streptococcus suis is one of the most important zoonotic bacterial pathogens of pigs, causing significant economic losses to the global swine industry. S. suis is also a very successful colonizer of mucosal surfaces, and commensal strains can be found in almost all pig populations worldwide, making detection of the S. suis species in asymptomatic carrier herds of little practical value in predicting the likelihood of future clinical relevance. The value of future molecular tools for surveillance and preventative health management lies in the detection of strains that genetically have increased potential to cause disease in presently healthy animals. Here we describe the use of genome-wide association studies to identify genetic markers associated with the observed clinical phenotypes (i) invasive disease and (ii) asymptomatic carriage on the palatine tonsils of pigs on UK farms. Subsequently, we designed a multiplex PCR to target three genetic markers that differentiated 115 S. suis isolates into disease-associated and non-disease-associated groups, that performed with a sensitivity of 0.91, a specificity of 0.79, a negative predictive value of 0.91, and a positive predictive value of 0.79 in comparison to observed clinical phenotypes. We describe evaluation of our pathotyping tool, using an out-of-sample collection of 50 previously uncharacterized S. suis isolates, in comparison to existing methods used to characterize and subtype S. suis isolates. In doing so, we show our pathotyping approach to be a competitive method to characterize S. suis isolates recovered from pigs on UK farms and one that can easily be updated to incorporate global strain collections.


Asunto(s)
Portador Sano/veterinaria , Infecciones Estreptocócicas/veterinaria , Streptococcus suis/aislamiento & purificación , Streptococcus suis/patogenicidad , Enfermedades de los Porcinos/microbiología , Animales , Portador Sano/microbiología , Inglaterra , Marcadores Genéticos/genética , Genoma Bacteriano/genética , Técnicas de Diagnóstico Molecular , Reacción en Cadena de la Polimerasa Multiplex , Tonsila Palatina/microbiología , Infecciones Estreptocócicas/microbiología , Streptococcus suis/genética , Porcinos , Virulencia/genética , Gales
10.
Appl Environ Microbiol ; 84(8)2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29427423

RESUMEN

Streptococcus suis, a global zoonosis of pigs, shows regional differences in the prevalence of human-associated disease for Asian and non-Asian countries. The isolation rates and diversities of S. suis on tonsils of healthy slaughter pigs in China and the United Kingdom were studied for effects of geography, temperature, pig age, and farm type. Isolates underwent analysis of molecular serotype and multilocus sequence type and virulence-associated genotyping. Although we found no significant difference in positive isolation rates between Chinese and UK farms, the prevalences of serotypes previously associated with human disease were significantly greater in the Chinese collection (P = 0.003). A significant effect of temperature was found on the positive isolation rate of the Chinese samples and the prevalence of human disease-associated serotypes in the UK S. suis population (China, P = 0.004; United Kingdom, P = 0.024) and on the prevalence of isolates carrying key virulence genes in China (P = 0.044). Finally, we found marked diversity among S. suis isolates, with statistically significant temperature effects on detection of multiple strain types within individual pigs. This study highlighted the high carriage prevalence and diversity of S. suis among clinically healthy pig herds of China and the United Kingdom. The significant effect of temperature on prevalence of isolation, human disease-associated serotypes, and diversity carried by individual pigs may shed new light on geographic variations in human S. suis-associated disease.IMPORTANCEStreptococcus suis is a global zoonotic pathogen and also a normal colonizer mainly carried on the tonsil of pigs. Thus, it is important to study the effect of environmental and management-associated factors on the S. suis populations in clinically healthy pigs. In this research, we investigated the similarities and differences between the S. suis populations obtained from different pig ages, seasons, and farm management systems and discovered the relationship between high climatic temperature and the prevalence of S. suis.


Asunto(s)
Crianza de Animales Domésticos/métodos , Variación Genética , Infecciones Estreptocócicas/veterinaria , Streptococcus suis/fisiología , Enfermedades de los Porcinos/epidemiología , Factores de Edad , Animales , China/epidemiología , Genoma Bacteriano , Estudios Longitudinales , Prevalencia , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/microbiología , Streptococcus suis/genética , Porcinos , Enfermedades de los Porcinos/microbiología , Temperatura , Reino Unido/epidemiología
11.
Traffic ; 13(1): 30-42, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21951707

RESUMEN

Infection of cells with African swine fever virus (ASFV) can lead to the formation of zipper-like stacks of structural proteins attached to collapsed endoplasmic reticulum (ER) cisternae. We show that the collapse of ER cisternae observed during ASFV infection is dependent on the viral envelope protein, J13Lp. Expression of J13Lp alone in cells is sufficient to induce collapsed ER cisternae. Collapse was dependent on a cysteine residue in the N-terminal domain of J13Lp exposed to the ER lumen. Luminal collapse was also dependent on the expression of J13Lp within stacks of ER where antiparallel interactions between the cytoplasmic domains of J13Lp orientated N-terminal domains across ER cisternae. Cisternal collapse was then driven by disulphide bonds between N-terminal domains arranged in antiparallel arrays across the ER lumen. This provides a novel mechanism for biogenesis of modified stacks of ER present in cells infected with ASFV, and may also be relevant to cellular processes.


Asunto(s)
Virus de la Fiebre Porcina Africana/fisiología , Retículo Endoplásmico/ultraestructura , Proteínas Virales/biosíntesis , Virus de la Fiebre Porcina Africana/ultraestructura , Animales , Técnicas de Cultivo de Célula , Chlorocebus aethiops , Técnica del Anticuerpo Fluorescente , Membranas Intracelulares/ultraestructura , Microscopía Electrónica de Transmisión , Plásmidos , Estructura Terciaria de Proteína , Transfección , Células Vero , Proteínas del Envoltorio Viral/biosíntesis , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/ultraestructura , Proteínas Virales/química , Proteínas Virales/ultraestructura , Ensamble de Virus
12.
Mol Microbiol ; 87(3): 526-38, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23190111

RESUMEN

OmpR is a multifunctional DNA binding regulator with orthologues in many enteric bacteria that exhibits classical regulator activity as well as nucleoid-associated protein-like characteristics. In the enteric pathogen Salmonella enterica, using chromatin immunoprecipitation of OmpR:FLAG and nucleotide sequencing, 43 putative OmpR binding sites were identified in S. enterica serovar Typhi, 22 of which were associated with OmpR-regulated genes. Mutation of a sequence motif (TGTWACAW) that was associated with the putative OmpR binding sites abrogated binding of OmpR:6×His to the tviA upstream region. A core set of 31 orthologous genes were found to exhibit OmpR-dependent expression in both S. Typhi and S. Typhimurium. S. Typhimurium-encoded orthologues of two divergently transcribed OmpR-regulated operons (SL1068-71 and SL1066-67) had a putative OmpR binding site in the inter-operon region in S. Typhi, and were characterized using in vitro and in vivo assays. These operons are widely distributed within S. enterica but absent from the closely related Escherichia coli. SL1066 and SL1067 were required for growth on N-acetylmuramic acid as a sole carbon source. SL1068-71 exhibited sequence similarity to sialic acid uptake systems and contributed to colonization of the ileum and caecum in the streptomycin-pretreated mouse model of colitis.


Asunto(s)
Perfilación de la Expresión Génica , Regulón , Salmonella typhi/genética , Salmonella typhi/patogenicidad , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad , Transactivadores/metabolismo , Animales , Sitios de Unión , Ciego/microbiología , Inmunoprecipitación de Cromatina , Colitis/microbiología , ADN Bacteriano/química , ADN Bacteriano/genética , Modelos Animales de Enfermedad , Íleon/microbiología , Ratones , Salmonelosis Animal/microbiología , Análisis de Secuencia de ADN , Transactivadores/genética , Virulencia
13.
J Virol ; 87(21): 11721-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23986596

RESUMEN

Picornavirus infection can cause Golgi fragmentation and impose a block in the secretory pathway which reduces expression of major histocompatibility antigens at the plasma membrane and slows secretion of proinflammatory cytokines. In this study, we show that Golgi fragmentation and a block in secretion are induced by expression of foot-and-mouth disease virus (FMDV) 3C(pro) and that this requires the protease activity of 3C(pro). 3C(pro) caused fragmentation of early, medial, and late Golgi compartments, but the most marked effect was on early Golgi compartments, indicated by redistribution of ERGIC53 and membrin. Golgi fragments were dispersed in the cytoplasm and were able to receive a model membrane protein exported from the endoplasmic reticulum (ER). Golgi fragments were, however, unable to transfer the protein to the plasma membrane, indicating a block in intra-Golgi transport. Golgi fragmentation was coincident with a loss of microtubule organization resulting from an inhibition of microtubule regrowth from the centrosome. Inhibition of microtubule regrowth also required 3C(pro) protease activity. The loss of microtubule organization induced by 3C(pro) caused Golgi fragmentation, but loss of microtubule organization does not block intra-Golgi transport. It is likely that the block of intra-Golgi transport is imposed by separate actions of 3C(pro), possibly through degradation of proteins required for intra-Golgi transport.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Virus de la Fiebre Aftosa/patogenicidad , Aparato de Golgi/metabolismo , Aparato de Golgi/fisiología , Interacciones Huésped-Patógeno , Proteínas Virales/metabolismo , Proteasas Virales 3C , Animales , Chlorocebus aethiops , Aparato de Golgi/ultraestructura , Microscopía Fluorescente , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Transporte de Proteínas , Células Vero
14.
JID Innov ; 4(4): 100283, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38827330

RESUMEN

The skin is a multifunctional organ, forming a barrier between the external and internal environment, thereby functioning as a safeguard against extrinsic factors. Autophagy has been implicated in epidermal differentiation and in preserving skin homeostasis. LC3-associated phagocytosis (LAP) uses some but not all components of autophagy. The Atg16l1 (Δ WD) mouse model lacks the WD40 domain required for LAP and has been widely used to study the effects of LAP deficiency and autophagy on tissue homeostasis and response to infection. In this study, the Δ WD model was used to study the relationship between LAP and skin homeostasis by determining whether LAP-deficient mice display a cutaneous phenotype. Skin histology of wild-type and Δ WD mice aged 1 year revealed minor morphological differences in the tail skin dermal layer. RT-qPCR and western blot analysis showed no differences in key keratin expression between genotypes. Skin barrier formation, assessed by dye permeation assays, demonstrated full and proper formation of the skin barrier at embryonic day 18.5 in both genotypes. Biomechanical analysis of the skin showed decreased skin elasticity in aged Δ WD but not wild-type mice. In summary, the LAP-deficient Δ WD mice displayed subtle alterations in dermal histology and age-related biomechanical changes.

15.
J Cell Biol ; 223(3)2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38227290

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2), a Rab kinase associated with Parkinson's disease and several inflammatory diseases, has been shown to localize to stressed lysosomes and get activated to regulate lysosomal homeostasis. However, the mechanisms of LRRK2 recruitment and activation have not been well understood. Here, we found that the ATG8 conjugation system regulates the recruitment of LRRK2 as well as LC3 onto single membranes of stressed lysosomes/phagosomes. This recruitment did not require FIP200-containing autophagy initiation complex, nor did it occur on double-membrane autophagosomes, suggesting independence from canonical autophagy. Consistently, LRRK2 recruitment was regulated by the V-ATPase-ATG16L1 axis, which requires the WD40 domain of ATG16L1 and specifically mediates ATG8 lipidation on single membranes. This mechanism was also responsible for the lysosomal stress-induced activation of LRRK2 and the resultant regulation of lysosomal secretion and enlargement. These results indicate that the V-ATPase-ATG16L1 axis serves a novel non-autophagic role in the maintenance of lysosomal homeostasis by recruiting LRRK2.


Asunto(s)
Adenosina Trifosfatasas , Proteínas Relacionadas con la Autofagia , Autofagia , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Lisosomas , Adenosina Trifosfatasas/metabolismo , Autofagosomas , Proteínas de Ciclo Celular , Humanos , Animales , Ratones , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo
16.
J Virol ; 86(23): 12940-53, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22993157

RESUMEN

Autophagy is an intracellular pathway that can contribute to innate antiviral immunity by delivering viruses to lysosomes for degradation or can be beneficial for viruses by providing specialized membranes for virus replication. Here, we show that the picornavirus foot-and-mouth disease virus (FMDV) induces the formation of autophagosomes. Induction was dependent on Atg5, involved processing of LC3 to LC3II, and led to a redistribution of LC3 from the cytosol to punctate vesicles indicative of authentic autophagosomes. Furthermore, FMDV yields were reduced in cells lacking Atg5, suggesting that autophagy may facilitate FMDV infection. However, induction of autophagosomes by FMDV appeared to differ from starvation, as the generation of LC3 punctae was not inhibited by wortmannin, implying that FMDV-induced autophagosome formation does not require the class III phosphatidylinositol 3-kinase (PI3-kinase) activity of vps34. Unlike other picornaviruses, for which there is strong evidence that autophagosome formation is linked to expression of viral nonstructural proteins, FMDV induced autophagosomes very early during infection. Furthermore, autophagosomes could be triggered by either UV-inactivated virus or empty FMDV capsids, suggesting that autophagosome formation was activated during cell entry. Unlike other picornaviruses, FMDV-induced autophagosomes did not colocalize with the viral 3A or 3D protein. In contrast, ∼50% of the autophagosomes induced by FMDV colocalized with VP1. LC3 and VP1 also colocalized with the cellular adaptor protein p62, which normally targets ubiquitinated proteins to autophagosomes. These results suggest that FMDV induces autophagosomes during cell entry to facilitate infection, but not to provide membranes for replication.


Asunto(s)
Autofagia/fisiología , Virus de la Fiebre Aftosa/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Fagosomas/virología , Internalización del Virus , Androstadienos , Animales , Proteína 5 Relacionada con la Autofagia , Western Blotting , Células CHO , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Cricetinae , Cricetulus , Proteínas Fluorescentes Verdes , Ratones , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/deficiencia , Wortmanina
17.
Org Biomol Chem ; 11(41): 7101-7, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24057694

RESUMEN

A plasmonic bioassay for the specific detection of human influenza virus has been developed based on gold nanoparticles functionalised with a designed and synthesised thiolated trivalent α2,6-thio-linked sialic acid derivative. The glyconanoparticles consist of the thiolated trivalent α2,6-thio-linked sialic acid derivative and a thiolated polyethylene glycol (PEG) derivative self-assembled onto the gold surface. Varying ratios of the trivalent α2,6-thio-linked sialic acid ligand and the PEG ligand were used; a ratio of 25:75 was found to be optimum for the detection of human influenza virus X31 (H3N2). In the presence of the influenza virus a solution of the glyconanoparticles aggregate following the binding of the trivalent α2,6-thio-linked sialic acid ligand to the haemagglutinin on the surface of the virus. The aggregation of the glycoparticles with the influenza virus induces a colour change of the solution within 30 min. Non-purified influenza virus in allantoic fluid was successfully detected using the functionalised glyconanoparticles. A comparison between the trivalent and a monovalent α2,6-thio-linked sialic acid functionalised nanoparticles confirmed that more rapid results, with greater sensitivity, were achieved using the trivalent ligand for the detection of the X31 virus. Importantly, the glyconanoparticles were able to discriminate between human (α2,6 binding) and avian (α2,3 binding) RG14 (H5N1) influenza virus highlighting the binding specificity of the trivalent α2,6-thio-linked sialic acid ligand.


Asunto(s)
Aves/virología , Carbohidratos/química , Oro/química , Gripe Aviar/virología , Gripe Humana/virología , Nanopartículas del Metal/química , Resonancia por Plasmón de Superficie , Animales , Colorimetría , Humanos , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Ligandos , Estructura Molecular , Ácido N-Acetilneuramínico/química , Sensibilidad y Especificidad , Especificidad de la Especie
18.
Sci Adv ; 8(43): eabn3298, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36288298

RESUMEN

The delivery of pathogens to lysosomes for degradation provides an important defense against infection. Degradation is enhanced when LC3 is conjugated to endosomes and phagosomes containing pathogens to facilitate fusion with lysosomes. In phagocytic cells, TLR signaling and Rubicon activate LC3-associated phagocytosis (LAP) where stabilization of the NADPH oxidase leads to sustained ROS production and raised vacuolar pH. Raised pH triggers the assembly of the vacuolar ATPase on the vacuole membrane where it binds ATG16L1 to recruit the core LC3 conjugation complex (ATG16L1:ATG5-12). This V-ATPase-ATG16L1 axis is also activated in nonphagocytic cells to conjugate LC3 to endosomes containing extracellular microbes. Pathogens provide additional signals for recruitment of LC3 when they raise vacuolar pH with pore-forming toxins and proteins, phospholipases, or specialized secretion systems. Many microbes secrete virulence factors to inhibit ROS production and/or the V-ATPase-ATG16L1 axis to slow LC3 recruitment and avoid degradation in lysosomes.

19.
J Clin Invest ; 132(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34990402

RESUMEN

The bone marrow (BM) microenvironment regulates acute myeloid leukemia (AML) initiation, proliferation, and chemotherapy resistance. Following cancer cell death, a growing body of evidence suggests an important role for remaining apoptotic debris in regulating the immunologic response to and growth of solid tumors. Here, we investigated the role of macrophage LC3-associated phagocytosis (LAP) within the BM microenvironment of AML. Depletion of BM macrophages (BMMs) increased AML growth in vivo. We show that LAP is the predominate method of BMM phagocytosis of dead and dying cells in the AML microenvironment. Targeted inhibition of LAP led to the accumulation of apoptotic cells (ACs) and apoptotic bodies (ABs), resulting in accelerated leukemia growth. Mechanistically, LAP of AML-derived ABs by BMMs resulted in stimulator of IFN genes (STING) pathway activation. We found that AML-derived mitochondrial damage-associated molecular patterns were processed by BMMs via LAP. Moreover, depletion of mitochondrial DNA (mtDNA) in AML-derived ABs showed that it was this mtDNA that was responsible for the induction of STING signaling in BMMs. Phenotypically, we found that STING activation suppressed AML growth through a mechanism related to increased phagocytosis. In summary, we report that macrophage LAP of apoptotic debris in the AML BM microenvironment suppressed tumor growth.


Asunto(s)
Médula Ósea , Leucemia Mieloide Aguda , Médula Ósea/metabolismo , ADN Mitocondrial/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Macrófagos/metabolismo , Fagocitosis , Microambiente Tumoral
20.
Semin Cell Dev Biol ; 20(7): 828-33, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19508853

RESUMEN

Several bacteria and viruses remodel cellular membranes to form compartments specialised for replication. Bacteria replicate within inclusions which recruit membrane vesicles from the secretory pathway to provide nutrients for microbial growth and division. Viruses generate densely packed membrane vesicles called viroplasm which provide a platform to recruit host and viral proteins necessary for replication. This review describes examples where both intracellular bacteria (Salmonella, Chlamydia and Legionella) and viruses (picornaviruses and hepatitis C) recruit membrane vesicles to sites of replication by modulating proteins that control the secretory pathway. In many cases this involves modulation of Rab and Arf GTPases.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Bacterias Gramnegativas/crecimiento & desarrollo , Virus ARN/fisiología , Replicación Viral , Animales , Bacterias Gramnegativas/metabolismo , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA