Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 295: 113047, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34146781

RESUMEN

Bioretention structures such as planter boxes, swales and rain gardens are being increasingly utilized in built landscapes as a strategy to attenuate both stormwater flows and contaminant loads. Copper (Cu) roofing materials contribute significantly higher mass loads of dissolved Cu per unit area than other surfaces such as parking lots and roadways. While a recent study demonstrated that conventional bioretention media can remove greater than 90% of Cu from copper roof runoff, the median Cu concentrations at the point of discharge from bioretention structures (66 µg L-1) still did not achieve Cu concentrations in stormwater discharges sought in some jurisdictions (for example, < 14 µg L-1). Consequently, commercially available soil amendments were assessed to improve bioretention Cu removal. The ability of biochar, greensand, and zeolite to improve Cu removal was evaluated in laboratory column studies. Additionally, the performance of zeolite as an underlayer amendment was evaluated in bioretention planter boxes treating stormwater from a picnic shelter with a partitioned copper roof. Cu was measured in the planter box influent and effluent. The field setup included 2 control planter boxes containing only standard bioretention media and 2 amended with the zeolite underlayer. Samples from ten storms were collected with flow-weighted composite sampling. Total Cu in composite samples of the influent waters ranged from 445 to 1683 µg L-1 and had a median concentration of 934 µg L-1. Total Cu in the effluent from the control planter boxes ranged from 10 to 64 µg L-1, with a mean of 29 µg L-1. Total Cu in effluent from the zeolite amended planter boxes ranged from 4 to 44 µg L-1 with a mean of 18 µg L-1. Attenuation in the control planter boxes ranged from 90 to 99% with a median of 93.4% by concentration and ranged from 95 to 99% with a median of 97.5% in the zeolite amended planter boxes.


Asunto(s)
Suelo , Zeolitas , Cobre , Lluvia
2.
Limnol Oceanogr Lett ; 8(1): 190-211, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37539375

RESUMEN

Factors driving freshwater salinization syndrome (FSS) influence the severity of impacts and chances for recovery. We hypothesize that spread of FSS across ecosystems is a function of interactions among five state factors: human activities, geology, flowpaths, climate, and time. (1) Human activities drive pulsed or chronic inputs of salt ions and mobilization of chemical contaminants. (2) Geology drives rates of erosion, weathering, ion exchange, and acidification-alkalinization. (3) Flowpaths drive salinization and contaminant mobilization along hydrologic cycles. (4) Climate drives rising water temperatures, salt stress, and evaporative concentration of ions and saltwater intrusion. (5) Time influences consequences, thresholds, and potentials for ecosystem recovery. We hypothesize that state factors advance FSS in distinct stages, which eventually contribute to failures in systems-level functions (supporting drinking water, crops, biodiversity, infrastructure, etc.). We present future research directions for protecting freshwaters at risk based on five state factors and stages from diagnosis to prognosis to cure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA