Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroeng Rehabil ; 16(1): 155, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31823792

RESUMEN

BACKGROUND: A prosthetic system should ideally reinstate the bidirectional communication between the user's brain and its end effector by restoring both motor and sensory functions lost after an amputation. However, current commercial prostheses generally do not incorporate somatosensory feedback. Even without explicit feedback, grasping using a prosthesis partly relies on sensory information. Indeed, the prosthesis operation is characterized by visual and sound cues that could be exploited by the user to estimate the prosthesis state. However, the quality of this incidental feedback has not been objectively evaluated. METHODS: In this study, the psychometric properties of the auditory and visual feedback of prosthesis motion were assessed and compared to that of a vibro-tactile interface. Twelve able-bodied subjects passively observed prosthesis closing and grasping an object, and they were asked to discriminate (experiment I) or estimate (experiment II) the closing velocity of the prosthesis using visual (VIS), acoustic (SND), or combined (VIS + SND) feedback. In experiment II, the subjects performed the task also with a vibrotactile stimulus (VIB) delivered using a single tactor. The outcome measures for the discrimination and estimation experiments were just noticeable difference (JND) and median absolute estimation error (MAE), respectively. RESULTS: The results demonstrated that the incidental sources provided a remarkably good discrimination and estimation of the closing velocity, significantly outperforming the vibrotactile feedback. Using incidental sources, the subjects could discriminate almost the minimum possible increment/decrement in velocity that could be commanded to the prosthesis (median JND < 2% for SND and VIS + SND). Similarly, the median MAE in estimating the prosthesis velocity randomly commanded from the full working range was also low, i.e., approximately 5% in SND and VIS + SND. CONCLUSIONS: Since the closing velocity is proportional to grasping force in state-of-the-art myoelectric prostheses, the results of the present study imply that the incidental feedback, when available, could be usefully exploited for grasping force control. Therefore, the impact of incidental feedback needs to be considered when designing a feedback interface in prosthetics, especially since the quality of estimation using supplemental sources (e.g., vibration) can be worse compared to that of the intrinsic cues.


Asunto(s)
Miembros Artificiales , Retroalimentación Sensorial/fisiología , Diseño de Prótesis , Adulto , Electromiografía/métodos , Femenino , Humanos , Masculino , Psicometría , Tacto , Vibración
2.
Front Neurosci ; 16: 958415, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389225

RESUMEN

Vibrotactile sensation is an essential part of the sense of touch. In this study, the localized vibrotactile sensation of the arm-shoulder region was quantified in 10 able-bodied subjects. For this analysis, the six relevant dermatomes (C3-T2) and three segments-the lower arm, the upper arm, and the shoulder region were studied. For psychometric evaluation, tasks resulting in the quantification of sensation threshold, just noticeable difference, Weber fraction, and perception of dynamically changing vibrotactile stimuli were performed. We found that healthy subjects could reliably detect vibration in all tested regions at low amplitude (2-6% of the maximal amplitude of commonly used vibrotactors). The detection threshold was significantly lower in the lower arm than that in the shoulder, as well as ventral in comparison with the dorsal. There were no significant differences in Weber fraction (20%) detectable between the studied locations. A compensatory tracking task resulted in a significantly higher average rectified error in the shoulder than that in the upper arm, while delay and correlation coefficient showed no difference between the regions. Here, we presented a conclusive map of the vibrotactile sense of the healthy upper limb. These data give an overview of the sensory bandwidth that can be achieved with vibrotactile stimulation at the arm and may help in the design of vibrotactile feedback interfaces (displays) for the hand/arm/shoulder-region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA