Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Annu Rev Biochem ; 86: 799-823, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28426241

RESUMEN

Iron is essential for the survival of most bacteria but presents a significant challenge given its limited bioavailability. Furthermore, the toxicity of iron combined with the need to maintain physiological iron levels within a narrow concentration range requires sophisticated systems to sense, regulate, and transport iron. Most bacteria have evolved mechanisms to chelate and transport ferric iron (Fe3+) via siderophore receptor systems, and pathogenic bacteria have further lowered this barrier by employing mechanisms to utilize the host's hemoproteins. Once internalized, heme is cleaved by both oxidative and nonoxidative mechanisms to release iron. Heme, itself a lipophilic and toxic molecule, presents a significant challenge for transport into the cell. As such, pathogenic bacteria have evolved sophisticated cell surface signaling and transport systems to obtain heme from the host. In this review, we summarize the structure and function of the heme-sensing and transport systems of pathogenic bacteria and the potential of these systems as antimicrobial targets.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Membrana Celular/efectos de los fármacos , Hemo/antagonistas & inhibidores , Hierro/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Receptores de Superficie Celular/antagonistas & inhibidores , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico/efectos de los fármacos , Membrana Celular/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Expresión Génica , Hemo/metabolismo , Metaloporfirinas/síntesis química , Metaloporfirinas/farmacología , Modelos Moleculares , Conformación Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Sideróforos/antagonistas & inhibidores , Sideróforos/biosíntesis , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/metabolismo
2.
J Biol Chem ; 296: 100275, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33428928

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen requiring iron for its survival and virulence. P. aeruginosa can acquire iron from heme via the nonredundant heme assimilation system and Pseudomonas heme uptake (Phu) systems. Heme transported by either the heme assimilation system or Phu system is sequestered by the cytoplasmic protein PhuS. Furthermore, PhuS has been shown to specifically transfer heme to the iron-regulated heme oxygenase HemO. As the PhuS homolog ShuS from Shigella dysenteriae was observed to bind DNA as a function of its heme status, we sought to further determine if PhuS, in addition to its role in regulating heme flux through HemO, functions as a DNA-binding protein. Herein, through a combination of chromatin immunoprecipitation-PCR, EMSA, and fluorescence anisotropy, we show that apo-PhuS but not holo-PhuS binds upstream of the tandem iron-responsive sRNAs prrF1,F2. Previous studies have shown the PrrF sRNAs are required for sparing iron for essential proteins during iron starvation. Furthermore, under certain conditions, a heme-dependent read through of the prrF1 terminator yields the longer PrrH transcript. Quantitative PCR analysis of P. aeruginosa WT and ΔphuS strains shows that loss of PhuS abrogates the heme-dependent regulation of PrrF and PrrH levels. Taken together, our data show that PhuS, in addition to its role in extracellular heme metabolism, also functions as a transcriptional regulator by modulating PrrF and PrrH levels in response to heme. This dual function of PhuS is central to integrating extracellular heme utilization into the PrrF/PrrH sRNA regulatory network that is critical for P. aeruginosa adaptation and virulence within the host.


Asunto(s)
Hemo Oxigenasa (Desciclizante)/genética , Proteínas de Unión al Hemo/genética , Hemoproteínas/genética , Pseudomonas aeruginosa/genética , Regulación Bacteriana de la Expresión Génica , Hemo/genética , Homeostasis/genética , Humanos , Hierro/metabolismo , Pseudomonas aeruginosa/patogenicidad , Shigella dysenteriae/genética , Shigella dysenteriae/patogenicidad , Virulencia/genética
3.
Biophys J ; 120(23): 5141-5157, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34767787

RESUMEN

The cytoplasmic heme binding protein from Pseudomonas aeruginosa, PhuS, plays two essential roles in regulating heme uptake and iron homeostasis. First, PhuS shuttles exogenous heme to heme oxygenase (HemO) for degradation and iron release. Second, PhuS binds DNA and modulates the transcription of the prrF/H small RNAs (sRNAs) involved in the iron-sparing response. Heme binding to PhuS regulates this dual function, as the unliganded form binds DNA, whereas the heme-bound form binds HemO. Crystallographic studies revealed nearly identical structures for apo- and holo-PhuS, and yet numerous solution-based measurements indicate that heme binding is accompanied by large conformational rearrangements. In particular, hydrogen-deuterium exchange mass spectrometry (HDX-MS) of apo- versus holo-PhuS revealed large differences in deuterium uptake, notably in α-helices 6, 7, and 8 (α6,7,8), which contribute to the heme binding pocket. These helices were mostly labile in apo-PhuS but largely protected in holo-PhuS. In contrast, in silico-predicted deuterium uptake levels of α6,7,8 from molecular dynamics (MD) simulations of the apo- and holo-PhuS structures are highly similar, consistent only with the holo-PhuS HDX-MS data. To rationalize this discrepancy between crystal structures, simulations, and observed HDX-MS, we exploit a recently developed computational approach (HDXer) that fits the relative weights of conformational populations within an ensemble of structures to conform to a target set of HDX-MS data. Here, a combination of enhanced sampling MD, HDXer, and dimensionality reduction analysis reveals an apo-PhuS conformational landscape in which α6, 7, and 8 are significantly rearranged compared to the crystal structure, including a loss of secondary structure in α6 and the displacement of α7 toward the HemO binding interface. Circular dichroism analysis confirms the loss of secondary structure, and the extracted ensembles of apo-PhuS and of heme-transfer-impaired H212R mutant, are consistent with known heme binding and transfer properties. The proposed conformational landscape provides structural insights into the modulation by heme of the dual function of PhuS.


Asunto(s)
Proteínas Bacterianas , Hemo , Proteínas Bacterianas/metabolismo , Hemo/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Proteínas de Unión al Hemo , Conformación Proteica , Pseudomonas aeruginosa/metabolismo
4.
Biochemistry ; 60(9): 689-698, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33621054

RESUMEN

Iron is an essential micronutrient for the survival and virulence of the bacterial pathogen Pseudomonas aeruginosa. To overcome iron withholding and successfully colonize a host, P. aeruginosa uses a variety of mechanisms to acquire iron, including the secretion of high-affinity iron chelators (siderophores) or the uptake and utilization of heme. P. aeruginosa heme oxygenase (HemO) plays pivotal roles in heme sensing, uptake, and utilization and has emerged as a therapeutic target for the development of antipseudomonal agents. Using a high-throughput fluorescence quenching assay combined with minimum inhibitory concentration measurements, we screened the Selleck Bioactive collection of 2100 compounds and identified acitretin, a Food and Drug Administration-approved oral retinoid, as a potent and selective inhibitor of HemO. Acitretin binds to HemO with a KD value of 0.10 ± 0.02 µM and inhibits the growth of P. aeruginosa PAO1 with an IC50 of 70 ± 18 µg/mL. In addition, acitretin showed good selectivity for HemO, which uniquely generates BVIXß/δ, over human heme oxygenase (hHO1) and other BVIXα-producing homologues such as the heme oxygenases from Neisseria meningitidis (nmHO) and Acinetobacter baumannii (abHO). The binding of acitretin within the HemO active site was confirmed by 1H-15N heteronuclear single-quantum coherence nuclear magnetic resonance, and molecular modeling provided further insight into potential interactions of acitretin with residues specific for orienting heme in the ß/δ selective HemO. Moreover, at 20 µM, acitretin inhibited the enzymatic activity of HemO in P. aeruginosa cells by >60% and effectively blocked the ability of P. aeruginosa to sense and acquire heme as demonstrated in the ß-galactosidase transcriptional reporter assay.


Asunto(s)
Acitretina/farmacología , Antibacterianos/farmacología , Reposicionamiento de Medicamentos/métodos , Hemo Oxigenasa (Desciclizante)/antagonistas & inhibidores , Hierro/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica , Humanos , Queratolíticos/farmacología , Pseudomonas aeruginosa/enzimología
5.
Biochemistry ; 60(33): 2549-2559, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34324310

RESUMEN

Pseudomonas aeruginosa senses extracellular heme via an extra cytoplasmic function σ factor that is activated upon interaction of the hemophore holo-HasAp with the HasR receptor. Herein, we show Y75H holo-HasAp interacts with HasR but is unable to release heme for signaling and uptake. To understand this inhibition, we undertook a spectroscopic characterization of Y75H holo-HasAp by resonance Raman (RR), electron paramagnetic resonance (EPR), and X-ray crystallography. The RR spectra are consistent with a mixed six-coordinate high-spin (6cHS), six-coordinate low-spin (6cLS) heme configuration and an H218O exchangeable FeIII-O stretching frequency with 16O/18O and H/D isotope shifts that support a two-body Fe-OH2 oscillator with (iron-hydroxy)-like character as both hydrogen atoms are engaged in short hydrogen bond interactions with protein side chains. Further support comes from the EPR spectrum of Y75H holo-HasAp that shows a LS rhombic signal with ligand-field splitting values intermediate between those of His-hydroxy and bis-His ferric hemes. The crystal structure of Y75H holo-HasAp confirmed the coordinated solvent molecule hydrogen bonded through H75 and H83. The long-range conformational rearrangement of HasAp upon heme binding can still take place in Y75H holo-HasAp, because the intercalation of a hydroxy ligand between the heme iron and H75 allows the variant to reproduce the heme binding pocket observed in wild-type holo-HasAp. However, in the absence of a covalent linkage to the Y75 loop combined with the malleability provided by the bracketing H75 and H83 hydrogen bonds, either the hydroxy sixth ligand remains bound after complexation of Y75H holo-HasAp with HasR or rearrangement and coordination of H85 prevent heme transfer.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Hemo/química , Hemo/metabolismo , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Factor sigma/metabolismo , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Cromatografía Liquida , Cristalografía por Rayos X , Dipéptidos/química , Espectroscopía de Resonancia por Spin del Electrón , Compuestos Férricos/metabolismo , Enlace de Hidrógeno , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Pseudomonas aeruginosa/genética , Espectrometría Raman , Resonancia por Plasmón de Superficie , Espectrometría de Masas en Tándem
6.
Biochemistry ; 60(10): 780-790, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33615774

RESUMEN

Cleavage and polyadenylation specificity factor 30 (CPSF30) is a zinc finger protein that regulates pre-mRNA processing. CPSF30 contains five CCCH domains and one CCHC domain and recognizes two conserved 3' pre-mRNA sequences: an AU hexamer and a U-rich motif. AU hexamer motifs are common in pre-mRNAs and are typically defined as AAUAAA. Variations within the AAUAAA hexamer occur in certain pre-mRNAs and can affect polyadenylation efficiency or be linked to diseases. The effects of disease-related variations on CPSF30/pre-mRNA binding were determined using a construct of CPSF30 that contains just the five CCCH domains (CPSF30-5F). Bioinformatics was utilized to identify the variability within the AU hexamer sequence in pre-mRNAs. The effects of this sequence variability on CPSF30-5F/RNA binding affinities were measured. Bases at positions 1, 2, 4, and 5 within the AU hexamer were found to be important for RNA binding. Bioinformatics revealed that the three bases flanking the AU hexamer at the 5' and 3' ends are twice as likely to be adenine or uracil as guanine and cytosine. The presence of A and U residues in these flanking regions was determined to promote higher-affinity CPSF30-5F/RNA binding than G and C residues. The addition of the zinc knuckle domain to CPSF30-5F (CPSF30-FL) restored binding to AU hexamer variants. This restoration of binding is connected to the presence of a U-rich sequence within the pre-mRNA to which the zinc knuckle binds. A mechanism of differential RNA binding by CPSF30, modulated by accessibility of the two RNA binding sites, is proposed.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Poli U/metabolismo , Poliadenilación , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , Animales , Sitios de Unión , Bovinos , Factor de Especificidad de Desdoblamiento y Poliadenilación/química , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Unión Proteica , Precursores del ARN/genética , ARN Mensajero/química , ARN Mensajero/genética , Dedos de Zinc
7.
J Biol Chem ; 295(30): 10456-10467, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32522817

RESUMEN

Pseudomonas aeruginosa exhibits a high requirement for iron, which it can acquire via several mechanisms, including the acquisition and utilization of heme. The P. aeruginosa genome encodes two heme uptake systems, the heme assimilation system (Has) and the Pseudomonas heme utilization (Phu) system. Extracellular heme is sensed via the Has system, which encodes an extracytoplasmic function (ECF) σ factor system. Previous studies have shown that the transfer of heme from the extracellular hemophore HasAp to the outer membrane receptor HasR is required for activation of the σ factor HasI and upregulation of has operon expression. Here, employing site-directed mutagenesis, allelic exchange, quantitative PCR analyses, immunoblotting, and 13C-heme uptake experiments, we delineated the differential contributions of the extracellular FRAP/PNPNL loop residue His-624 in HasR and of His-221 in its N-terminal plug domain required for heme capture to heme transport and signaling, respectively. Specifically, we show that substitution of the N-terminal plug His-221 disrupts both signaling and transport, leading to dysregulation of both the Has and Phu uptake systems. Our results are consistent with a model wherein heme release from HasAp to the N-terminal plug of HasR is required to initiate signaling, whereas His-624 is required for simultaneously closing off the heme transport channel from the extracellular medium and triggering heme transport. Our results provide critical insight into heme release, signaling, and transport in P. aeruginosa and suggest a functional link between the ECF σ factor and Phu heme uptake system.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Hemo/metabolismo , Pseudomonas aeruginosa/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Transporte Biológico Activo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Hemo/genética , Mutagénesis Sitio-Dirigida , Operón/fisiología , Pseudomonas aeruginosa/genética , Receptores de Superficie Celular/genética , Factor sigma/genética , Factor sigma/metabolismo
8.
J Biol Chem ; 294(8): 2771-2785, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30593511

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that utilizes heme as a primary iron source within the host. Extracellular heme is sensed via a heme assimilation system (has) that encodes an extracytoplasmic function (ECF) σ factor system. Herein, using has deletion mutants, quantitative PCR analyses, and immunoblotting, we show that the activation of the σ factor HasI requires heme release from the hemophore HasAp to the outer-membrane receptor HasR. Using RT-PCR and 5'-RACE, we observed that following transcriptional activation of the co-transcribed hasRAp, it is further processed into specific mRNAs varying in stability. We noted that the processing and variation in stability of the hasAp and hasR mRNAs in response to heme provide a mechanism for differential expression from co-transcribed genes. The multiple layers of post-transcriptional regulation of the ECF signaling cascade, including the previously reported post-transcriptional regulation of HasAp by the heme metabolites biliverdin IXß and IXδ, allow fine-tuning of the cell-surface signaling system in response to extracellular heme levels. We hypothesize that the complex post-transcriptional regulation of the Has system provides P. aeruginosa an advantage in colonizing a variety of physiological niches in the host.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Hemo/metabolismo , Pseudomonas aeruginosa/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , Proteínas Bacterianas/química , Cristalografía por Rayos X , Hemo/química , Hierro/metabolismo , Conformación Proteica , ARN Mensajero/metabolismo
9.
Nucleic Acids Res ; 46(D1): D575-D580, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29106626

RESUMEN

The Pseudomonas aeruginosaMetabolome Database (PAMDB, http://pseudomonas.umaryland.edu) is a searchable, richly annotated metabolite database specific to P. aeruginosa. P. aeruginosa is a soil organism and significant opportunistic pathogen that adapts to its environment through a versatile energy metabolism network. Furthermore, P. aeruginosa is a model organism for the study of biofilm formation, quorum sensing, and bioremediation processes, each of which are dependent on unique pathways and metabolites. The PAMDB is modelled on the Escherichia coli (ECMDB), yeast (YMDB) and human (HMDB) metabolome databases and contains >4370 metabolites and 938 pathways with links to over 1260 genes and proteins. The database information was compiled from electronic databases, journal articles and mass spectrometry (MS) metabolomic data obtained in our laboratories. For each metabolite entered, we provide detailed compound descriptions, names and synonyms, structural and physiochemical information, nuclear magnetic resonance (NMR) and MS spectra, enzymes and pathway information, as well as gene and protein sequences. The database allows extensive searching via chemical names, structure and molecular weight, together with gene, protein and pathway relationships. The PAMBD and its future iterations will provide a valuable resource to biologists, natural product chemists and clinicians in identifying active compounds, potential biomarkers and clinical diagnostics.


Asunto(s)
Bases de Datos Factuales , Metabolómica , Pseudomonas aeruginosa/metabolismo , Curaduría de Datos , Redes y Vías Metabólicas , Metaboloma , Motor de Búsqueda , Interfaz Usuario-Computador
10.
Proc Natl Acad Sci U S A ; 114(13): 3421-3426, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28289188

RESUMEN

A heme-dependent conformational rearrangement of the C-terminal domain of heme binding protein (PhuS) is required for interaction with the iron-regulated heme oxygenase (HemO). Herein, we further investigate the underlying mechanism of this conformational rearrangement and its implications for heme transfer via site-directed mutagenesis, resonance Raman (RR), hydrogen-deuterium exchange MS (HDX-MS) methods, and molecular dynamics (MD). HDX-MS revealed that the apo-PhuS C-terminal α6/α7/α8-helices are largely unstructured, whereas the apo-PhuS H212R variant showed an increase in structure within these regions. The increased rate of heme association with apo-PhuS H212R compared with the WT and lack of a detectable five-coordinate high-spin (5cHS) heme intermediate are consistent with a more folded and less dynamic C-terminal domain. HDX-MS and MD of holo-PhuS indicate an overall reduction in molecular flexibility throughout the protein, with significant structural rearrangement and protection of the heme binding pocket. We observed slow cooperative unfolding/folding events within the C-terminal helices of holo-PhuS and the N-terminal α1/α2-helices that are dampened or eliminated in the holo-PhuS H212R variant. Chemical cross-linking and MALDI-TOF MS mapped these same regions to the PhuS:HemO protein-protein interface. We previously proposed that the protein-protein interaction induces conformational rearrangement, promoting a ligand switch from His-209 to His-212 and triggering heme release to HemO. The reduced conformational freedom of holo-PhuS H212R combined with the increase in entropy and decrease in heme transfer on interaction with HemO further support this model. This study provides significant insight into the role of protein dynamics in heme binding and release in bacterial heme transport proteins.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemoproteínas/química , Hemoproteínas/metabolismo , Pseudomonas aeruginosa/metabolismo , Regulación Alostérica , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Hemo Oxigenasa (Desciclizante)/química , Hemo Oxigenasa (Desciclizante)/genética , Proteínas de Unión al Hemo , Hemoproteínas/genética , Ligandos , Unión Proteica , Estructura Secundaria de Proteína , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética
11.
J Bacteriol ; 201(12)2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30962354

RESUMEN

Iron is a critical nutrient for most microbial pathogens, and the immune system exploits this requirement by sequestering iron. The opportunistic pathogen Pseudomonas aeruginosa exhibits a high requirement for iron yet an exquisite ability to overcome iron deprivation during infection. Upon iron starvation, P. aeruginosa induces the expression of several high-affinity iron acquisition systems, as well as the PrrF small regulatory RNAs (sRNAs) that mediate an iron-sparing response. Here, we used liquid chromatography-tandem mass spectrometry to conduct proteomics of the iron starvation response of P. aeruginosa Iron starvation increased levels of multiple proteins involved in amino acid catabolism, providing the capacity for iron-independent entry of carbons into the tricarboxylic acid (TCA) cycle. Proteins involved in sulfur assimilation and cysteine biosynthesis were reduced upon iron starvation, while proteins involved in iron-sulfur cluster biogenesis were increased, highlighting the central role of iron in P. aeruginosa metabolism. Iron starvation also resulted in changes in the expression of several zinc-responsive proteins and increased levels of twitching motility proteins. Subsequent analyses provided evidence for the regulation of many of these proteins via posttranscriptional regulatory events, some of which are dependent upon the PrrF sRNAs. Moreover, we showed that iron-regulated twitching motility is partially dependent upon the prrF locus, highlighting a novel link between the PrrF sRNAs and motility. These findings add to the known impacts of iron starvation in P. aeruginosa and outline potentially novel roles for the PrrF sRNAs in iron homeostasis and pathogenesis.IMPORTANCE Iron is central for growth and metabolism of almost all microbial pathogens, and as such, this element is sequestered by the host innate immune system to restrict microbial growth. Here, we used label-free proteomics to investigate the Pseudomonas aeruginosa iron starvation response, revealing a broad landscape of metabolic and metal homeostasis changes that have not previously been described. We further provide evidence that many of these processes, including twitching motility, are regulated through the iron-responsive PrrF small regulatory RNAs. As such, this study demonstrates the power of proteomics for defining stress responses of microbial pathogens.


Asunto(s)
Aminoácidos/metabolismo , Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Pseudomonas aeruginosa/metabolismo , ARN Bacteriano/genética , Zinc/metabolismo , Regulación Bacteriana de la Expresión Génica , Homeostasis , Proteómica , Pseudomonas aeruginosa/genética
12.
Arch Biochem Biophys ; 672: 108066, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31398314

RESUMEN

Acinetobacter baumannii is an opportunistic pathogen that causes serious infections in critically ill and immune compromised patients. The ability to acquire iron from the hosts iron and heme containing proteins is critical to their survival and virulence. The majority of A. baumannii hypervirulent strains encode a heme uptake system that includes a putative heme oxygenase (hemO). Despite reports indicating A. baumannii can grow on heme direct evidence of extracellular heme uptake and metabolism has not been shown. Through isotopic labeling (13C-heme) we show the hypervirulent A. baumannii LAC-4 metabolizes heme to biliverdin IXα (BVIXα), whereas ATC 17978 that lacks the hemO gene cluster cannot efficiently utilize heme. Expression and purification of the protein encoded by the A. baumannii LAC-4 hemO gene confirmed catalytic conversion of heme to BVIX. We further show inhibition of abHemO with previously characterized P. aeruginosa HemO inhibitors in a fluorescence based assay that couples HemO catalytic activity to the BVIXα binding phytochrome IFP1.4. Furthermore, the hemO gene cluster encodes genes with homology to heme-dependent extra cytoplasmic function (ECF) σ factor systems. The hemophore-dependent ECF system in Pseudomonas aeruginosa has been shown to play a critical role in heme sensing and virulence within the host. The prevalence of a hemO gene cluster in A. baumannii LAC4 and other hypervirulent strains suggests it is required within the host to adapt and utilize heme and is a major contributor to virulence.


Asunto(s)
Acinetobacter baumannii/metabolismo , Proteínas Bacterianas/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo/metabolismo , Factores de Virulencia/metabolismo , Acinetobacter baumannii/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Hemo Oxigenasa (Desciclizante)/genética , Hemo Oxigenasa (Desciclizante)/aislamiento & purificación , Hierro/metabolismo , Familia de Multigenes , Factores de Virulencia/genética , Factores de Virulencia/aislamiento & purificación
13.
J Biol Inorg Chem ; 23(7): 1071, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30302600

RESUMEN

In the original publication, fifth author's name was incorrectly published as Pierre Moenne-Loccoz.

14.
J Biol Inorg Chem ; 23(7): 1057-1070, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30194537

RESUMEN

The P. aeruginosa iron-regulated heme oxygenase (HemO) is required within the host for the utilization of heme as an iron source. As iron is essential for survival and virulence, HemO represents a novel antimicrobial target. We recently characterized small molecule inhibitors that bind to an allosteric site distant from the heme pocket, and further proposed binding at this site disrupts a nearby salt bridge between D99 and R188. Herein, through a combination of site-directed mutagenesis and hydrogen-deuterium exchange mass spectrometry (HDX-MS), we determined that the disruption of the D99-R188 salt bridge leads to significant decrease in conformational flexibility within the distal and proximal helices that form the heme-binding site. The RR spectra of the resting state Fe(III) and reduced Fe(II)-deoxy heme-HemO D99A, R188A and D99/R188A complexes are virtually identical to those of wild-type HemO, indicating no significant change in the heme environment. Furthermore, mutation of D99 or R188 leads to a modest decrease in the stability of the Fe(II)-O2 heme complex. Despite this slight difference in Fe(II)-O2 stability, we observe complete loss of enzymatic activity. We conclude the loss of activity is a result of decreased conformational flexibility in helices previously shown to be critical in accommodating variation in the distal ligand and the resulting chemical intermediates generated during catalysis. Furthermore, this newly identified allosteric binding site on HemO represents a novel alternative drug-design strategy to that of competitive inhibition at the active site or via direct coordination of ligands to the heme iron.


Asunto(s)
Arginina/química , Ácido Aspártico/química , Hemo Oxigenasa (Desciclizante)/química , Pseudomonas aeruginosa/química , Arginina/metabolismo , Ácido Aspártico/metabolismo , Biocatálisis , Hemo Oxigenasa (Desciclizante)/aislamiento & purificación , Hemo Oxigenasa (Desciclizante)/metabolismo , Modelos Moleculares , Conformación Proteica , Sales (Química)/química , Sales (Química)/metabolismo
15.
J Biol Chem ; 291(39): 20503-15, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27493207

RESUMEN

Pseudomonas aeruginosa acquires extracellular heme via the Phu (Pseudomonas heme uptake) and Has (heme assimilation system) systems. We have previously shown the catalytic actions of heme oxygenase (HemO) along with the cytoplasmic heme transport protein PhuS control heme flux into the cell. To further investigate the role of the PhuS-HemO couple in modulating heme uptake, we have characterized two HemO variants, one that is catalytically inactive (HemO H26A/K34A/K132A or HemOin) and one that has altered regioselectivity (HemO N19K/K34A/F117Y/K132A or HemOα), producing biliverdin IXα (BVIXα). HemOα similar to wild type was able to interact and acquire heme from holo-PhuS. In contrast, the HemOin variant did not interact with holo-PhuS and showed no enzymatic activity. Complementation of a hemO deletion strain with the hemOin or hemOα variants in combination with [(13)C]heme isotopic labeling experiments revealed that the absence of BVIXß and BVIXδ leads to a decrease in extracellular levels of hemophore HasA. We propose BVIXß and/or BVIXδ transcriptionally or post-transcriptionally regulates HasA. Thus, coupling the PhuS-dependent flux of heme through HemO to feedback regulation of the cell surface signaling system through HasA allows P. aeruginosa to rapidly respond to fluctuating extracellular heme levels independent of the iron status of the cell.


Asunto(s)
Hemo Oxigenasa (Desciclizante) , Hierro , Mutación Missense , Pseudomonas aeruginosa , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biliverdina/análogos & derivados , Biliverdina/química , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Hemo/genética , Hemo/metabolismo , Hemo Oxigenasa (Desciclizante)/química , Hemo Oxigenasa (Desciclizante)/genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Hierro/química , Hierro/metabolismo , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética
16.
BMC Microbiol ; 17(1): 199, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28927382

RESUMEN

BACKGROUND: Pseudomonas aeruginosa is a model organism for the study of quorum sensing, biofilm formation, and also leading cause of nosocomial infections in immune compromised patients. As such P. aeruginosa is one of the most well studied organisms in terms of its genetics. However, the construction of gene deletions and replacements in Pseudomonas aeruginosa is relatively time-consuming, requiring multiple steps including suicide vector construction, conjugation, inactivation with insertion of antibiotic resistance cassettes and allelic exchange. Even employing Gateway recombineering techniques with direct transformation requires a minimum two weeks. METHODS: We have developed a rapid streamlined method to create clean deletion mutants in P. aeruginosa through direct transformation, eliminating the need for the creation of Gateway-compatible suicide vectors. In this method, upstream and downstream sequences of the gene/locus to be deleted are amplified by polymerase chain reaction (PCR) and seamlessly fused with the linearized pEX18Tc sacB suicide plasmid by Gibson assembly. The resulting deletion plasmid is transformed into P. aeruginosa by an electroporation method optimized in this study. The plasmid is then integrated into the chromosome by homologous recombination, and deletion mutants are identified via sacB mediated sucrose counter-selection. RESULTS: The current method was employed to generate clean gene deletions of the heme assimilation system anti-σ factor, hasS and the virulence regulator involving ECF system anti-σ and σ factors vreA and vreI, respectively. The process from plasmid construction to confirmation by DNA sequencing of the gene deletion was completed in one week. Furthermore, the utility of the method is highlighted in the construction of the vreA and vreI deletions, where the start codon of vreA and the stop codon of vreI overlap. Utilizing Gibson assembly deletion mutants were constructed with single base pair precision to generate the respective vreA and vreI deletions, while maintaining the start and stop codon of the respective genes. Overall, this method allows for rapid construction of gene deletions in P. aeruginosa with base pair precision. CONCLUSION: This method from the construction of the suicide vector to sequence confirmation of the unmarked gene deletion can be performed in one week, without the requirement for expensive proprietary reagents or instruments. The precision of Gibson assembly and the fact the accuracy in generating the desirable construct is 95%, makes this a viable and attractive alternative to previous methods.


Asunto(s)
Técnicas de Inactivación de Genes/métodos , Ingeniería Genética/métodos , Pseudomonas aeruginosa/genética , Proteínas Bacterianas/genética , ADN Bacteriano , Electroporación , Escherichia coli/genética , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Marcadores Genéticos , Vectores Genéticos , Plásmidos/genética , Reacción en Cadena de la Polimerasa , Recombinación Genética , Análisis de Secuencia de ADN , Factor sigma/genética , Transformación Genética
18.
J Biol Chem ; 290(12): 7756-66, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25616666

RESUMEN

Pseudomonas aeruginosa PAO1 encodes two outer membrane receptors, PhuR (Pseudomonas heme uptake) and HasR (heme assimilation system). The HasR and PhuR receptors have distinct heme coordinating ligands and substrate specificities. HasR is encoded in an operon with a secreted hemophore, HasAp. In contrast the non-hemophore-dependent PhuR is encoded within an operon along with proteins required for heme translocation into the cytoplasm. Herein we report on the contributions of the HasR and PhuR receptors to heme uptake and utilization. Employing bacterial genetics and isotopic [(13)C]heme labeling studies we have shown both PhuR and HasR are required for optimal heme utilization. However, the unique His-Tyr-ligated PhuR plays a major role in the acquisition of heme. In contrast the HasR receptor plays a primary role in the sensing of extracellular heme and a supplementary role in heme uptake. We propose PhuR and HasR represent non-redundant heme receptors, capable of accessing heme across a wide range of physiological conditions on colonization of the host.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Hemo/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Hemo/química , Modelos Moleculares
19.
Biochemistry ; 54(16): 2601-12, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25849630

RESUMEN

Pseudomonas aeruginosa PAO1 encodes two outer membrane receptors, PhuR (Pseudomonas heme uptake) and HasR (heme assimilation system). The HasR receptor acquires heme through interaction with a secreted hemophore, HasAp. The non-hemophore-dependent PhuR is encoded along with proteins required for heme translocation into the cytoplasm. Herein, we report the isolation and characterization of the HasR and PhuR receptors. Absorption and MCD spectroscopy confirmed that, similar to other Gram-negative OM receptors, HasR coordinates heme through the conserved N-terminal plug His-221 and His-624 of the surface-exposed FRAP-loop. In contrast, PhuR showed distinct absorption and MCD spectra consistent with coordination through a Tyr residue. Sequence alignment of PhuR with all known Gram-negative OM heme receptors revealed a lack of a conserved His within the FRAP loop but two Tyr residues at positions 519 and 529. Site-directed mutagenesis and spectroscopic characterization confirmed Tyr-519 and the N-terminal plug His-124 provide the heme ligands in PhuR. We propose that PhuR and HasR represent nonredundant heme receptors capable of sensing and accessing heme across a wide range of physiological conditions on colonization and infection of the host.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas Portadoras/química , Hemo/química , Pseudomonas aeruginosa/química , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Hemo/metabolismo , Mutagénesis Sitio-Dirigida , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Alineación de Secuencia
20.
Infect Immun ; 83(3): 863-75, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25510881

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that requires iron to cause infection, but it also must regulate the uptake of iron to avoid iron toxicity. The iron-responsive PrrF1 and PrrF2 small regulatory RNAs (sRNAs) are part of P. aeruginosa's iron regulatory network and affect the expression of at least 50 genes encoding iron-containing proteins. The genes encoding the PrrF1 and PrrF2 sRNAs are encoded in tandem in P. aeruginosa, allowing for the expression of a distinct, heme-responsive sRNA named PrrH that appears to regulate genes involved in heme metabolism. Using a combination of growth, mass spectrometry, and gene expression analysis, we showed that the ΔprrF1,2 mutant, which lacks expression of the PrrF and PrrH sRNAs, is defective for both iron and heme homeostasis. We also identified phuS, encoding a heme binding protein involved in heme acquisition, and vreR, encoding a previously identified regulator of P. aeruginosa virulence genes, as novel targets of prrF-mediated heme regulation. Finally, we showed that the prrF locus encoding the PrrF and PrrH sRNAs is required for P. aeruginosa virulence in a murine model of acute lung infection. Moreover, we showed that inoculation with a ΔprrF1,2 deletion mutant protects against future challenge with wild-type P. aeruginosa. Combined, these data demonstrate that the prrF-encoded sRNAs are critical regulators of P. aeruginosa virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Hierro/metabolismo , Infecciones por Pseudomonas/prevención & control , Pseudomonas aeruginosa/genética , ARN no Traducido/metabolismo , Enfermedad Aguda , Animales , Proteínas Bacterianas/genética , Secuencia de Bases , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Hemo/metabolismo , Proteínas de Unión al Hemo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Homeostasis , Humanos , Inmunización , Pulmón/microbiología , Pulmón/patología , Ratones , Datos de Secuencia Molecular , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidad , ARN no Traducido/administración & dosificación , ARN no Traducido/genética , ARN no Traducido/inmunología , Eliminación de Secuencia , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA