RESUMEN
ANKRD17 is an ankyrin repeat-containing protein thought to play a role in cell cycle progression, whose ortholog in Drosophila functions in the Hippo pathway as a co-factor of Yorkie. Here, we delineate a neurodevelopmental disorder caused by de novo heterozygous ANKRD17 variants. The mutational spectrum of this cohort of 34 individuals from 32 families is highly suggestive of haploinsufficiency as the underlying mechanism of disease, with 21 truncating or essential splice site variants, 9 missense variants, 1 in-frame insertion-deletion, and 1 microdeletion (1.16 Mb). Consequently, our data indicate that loss of ANKRD17 is likely the main cause of phenotypes previously associated with large multi-gene chromosomal aberrations of the 4q13.3 region. Protein modeling suggests that most of the missense variants disrupt the stability of the ankyrin repeats through alteration of core structural residues. The major phenotypic characteristic of our cohort is a variable degree of developmental delay/intellectual disability, particularly affecting speech, while additional features include growth failure, feeding difficulties, non-specific MRI abnormalities, epilepsy and/or abnormal EEG, predisposition to recurrent infections (mostly bacterial), ophthalmological abnormalities, gait/balance disturbance, and joint hypermobility. Moreover, many individuals shared similar dysmorphic facial features. Analysis of single-cell RNA-seq data from the developing human telencephalon indicated ANKRD17 expression at multiple stages of neurogenesis, adding further evidence to the assertion that damaging ANKRD17 variants cause a neurodevelopmental disorder.
Asunto(s)
Anomalías Craneofaciales/etiología , Heterocigoto , Discapacidad Intelectual/etiología , Trastornos del Desarrollo del Lenguaje/etiología , Mutación con Pérdida de Función , Proteínas de Unión al ARN/genética , Adolescente , Adulto , Niño , Preescolar , Anomalías Craneofaciales/patología , Femenino , Haploinsuficiencia , Humanos , Lactante , Discapacidad Intelectual/patología , Trastornos del Desarrollo del Lenguaje/patología , Masculino , Linaje , Fenotipo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Síndrome , Adulto JovenRESUMEN
Hypusine is formed post-translationally from lysine and is found in a single cellular protein, eukaryotic translation initiation factor-5A (eIF5A), and its homolog eIF5A2. Biosynthesis of hypusine is a two-step reaction involving the enzymes deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH). eIF5A is highly conserved throughout eukaryotic evolution and plays a role in mRNA translation, cellular proliferation, cellular differentiation, and inflammation. DHPS is also highly conserved and is essential for life, as Dhps-null mice are embryonic lethal. Using exome sequencing, we identified rare biallelic, recurrent, predicted likely pathogenic variants in DHPS segregating with disease in five affected individuals from four unrelated families. These individuals have similar neurodevelopmental features that include global developmental delay and seizures. Two of four affected females have short stature. All five affected individuals share a recurrent missense variant (c.518A>G [p.Asn173Ser]) in trans with a likely gene disrupting variant (c.1014+1G>A, c.912_917delTTACAT [p.Tyr305_Ile306del], or c.1A>G [p.Met1?]). cDNA studies demonstrated that the c.1014+1G>A variant causes aberrant splicing. Recombinant DHPS enzyme harboring either the p.Asn173Ser or p.Tyr305_Ile306del variant showed reduced (20%) or absent in vitro activity, respectively. We co-transfected constructs overexpressing HA-tagged DHPS (wild-type or mutant) and GFP-tagged eIF5A into HEK293T cells to determine the effect of these variants on hypusine biosynthesis and observed that the p.Tyr305_Ile306del and p.Asn173Ser variants resulted in reduced hypusination of eIF5A compared to wild-type DHPS enzyme. Our data suggest that rare biallelic variants in DHPS result in reduced enzyme activity that limits the hypusination of eIF5A and are associated with a neurodevelopmental disorder.
Asunto(s)
Genes Recesivos/genética , Lisina/análogos & derivados , Mutación , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Alelos , Secuencia de Aminoácidos , Niño , Preescolar , Discapacidades del Desarrollo/enzimología , Discapacidades del Desarrollo/genética , Femenino , Haplotipos , Humanos , Lisina/biosíntesis , Masculino , Errores Innatos del Metabolismo/enzimología , Errores Innatos del Metabolismo/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Linaje , Factores de Iniciación de Péptidos/química , Factores de Iniciación de Péptidos/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Convulsiones/enzimología , Convulsiones/genética , Adulto Joven , Factor 5A Eucariótico de Iniciación de TraducciónRESUMEN
PURPOSE: This study aimed to describe the phenotypic and molecular characteristics of ARCN1-related syndrome. METHODS: Patients with ARCN1 variants were identified, and clinician researchers were connected using GeneMatcher and physician referrals. Clinical histories were collected from each patient. RESULTS: In total, we identified 14 cases of ARCN1-related syndrome, (9 pediatrics, and 5 fetal cases from 3 families). The clinical features these newly identified cases were compared to 6 previously reported cases for a total of 20 cases. Intrauterine growth restriction, micrognathia, and short stature were present in all patients. Other common features included prematurity (11/15, 73.3%), developmental delay (10/14, 71.4%), genitourinary malformations in males (6/8, 75%), and microcephaly (12/15, 80%). Novel features of ARCN1-related syndrome included transient liver dysfunction and specific glycosylation abnormalities during illness, giant cell hepatitis, hepatoblastoma, cataracts, and lethal skeletal manifestations. Developmental delay was seen in 73% of patients, but only 3 patients had intellectual disability, which is less common than previously reported. CONCLUSION: ARCN1-related syndrome presents with a wide clinical spectrum ranging from a severe embryonic lethal syndrome to a mild syndrome with intrauterine growth restriction, micrognathia, and short stature without intellectual disability. Patients with ARCN1-related syndrome should be monitored for liver dysfunction during illness, cataracts, and hepatoblastoma. Additional research to further define the phenotypic spectrum and possible genotype-phenotype correlations are required.
Asunto(s)
Catarata , Enanismo , Hepatoblastoma , Discapacidad Intelectual , Neoplasias Hepáticas , Micrognatismo , Niño , Femenino , Retardo del Crecimiento Fetal/genética , Humanos , Discapacidad Intelectual/genética , Masculino , Fenotipo , SíndromeRESUMEN
RORα, the RAR-related orphan nuclear receptor alpha, is essential for cerebellar development. The spontaneous mutant mouse staggerer, with an ataxic gait caused by neurodegeneration of cerebellar Purkinje cells, was discovered two decades ago to result from homozygous intragenic Rora deletions. However, RORA mutations were hitherto undocumented in humans. Through a multi-centric collaboration, we identified three copy-number variant deletions (two de novo and one dominantly inherited in three generations), one de novo disrupting duplication, and nine de novo point mutations (three truncating, one canonical splice site, and five missense mutations) involving RORA in 16 individuals from 13 families with variable neurodevelopmental delay and intellectual disability (ID)-associated autistic features, cerebellar ataxia, and epilepsy. Consistent with the human and mouse data, disruption of the D. rerio ortholog, roraa, causes significant reduction in the size of the developing cerebellum. Systematic in vivo complementation studies showed that, whereas wild-type human RORA mRNA could complement the cerebellar pathology, missense variants had two distinct pathogenic mechanisms of either haploinsufficiency or a dominant toxic effect according to their localization in the ligand-binding or DNA-binding domains, respectively. This dichotomous direction of effect is likely relevant to the phenotype in humans: individuals with loss-of-function variants leading to haploinsufficiency show ID with autistic features, while individuals with de novo dominant toxic variants present with ID, ataxia, and cerebellar atrophy. Our combined genetic and functional data highlight the complex mutational landscape at the human RORA locus and suggest that dual mutational effects likely determine phenotypic outcome.
Asunto(s)
Trastorno Autístico/genética , Ataxia Cerebelosa/genética , Genes Dominantes , Discapacidad Intelectual/genética , Mutación Missense/genética , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Adolescente , Adulto , Anciano de 80 o más Años , Alelos , Animales , Trastorno Autístico/complicaciones , Encéfalo/patología , Ataxia Cerebelosa/complicaciones , Niño , Preescolar , Variaciones en el Número de Copia de ADN/genética , Modelos Animales de Enfermedad , Femenino , Prueba de Complementación Genética , Humanos , Discapacidad Intelectual/complicaciones , Larva/genética , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Células de Purkinje/metabolismo , Células de Purkinje/patología , Síndrome , Pez Cebra/genéticaRESUMEN
PURPOSE: We characterize the clinical and molecular phenotypes of six unrelated individuals with intellectual disability and autism spectrum disorder who carry heterozygous missense variants of the PRKAR1B gene, which encodes the R1ß subunit of the cyclic AMP-dependent protein kinase A (PKA). METHODS: Variants of PRKAR1B were identified by single- or trio-exome analysis. We contacted the families and physicians of the six individuals to collect phenotypic information, performed in vitro analyses of the identified PRKAR1B-variants, and investigated PRKAR1B expression during embryonic development. RESULTS: Recent studies of large patient cohorts with neurodevelopmental disorders found significant enrichment of de novo missense variants in PRKAR1B. In our cohort, de novo origin of the PRKAR1B variants could be confirmed in five of six individuals, and four carried the same heterozygous de novo variant c.1003C>T (p.Arg335Trp; NM_001164760). Global developmental delay, autism spectrum disorder, and apraxia/dyspraxia have been reported in all six, and reduced pain sensitivity was found in three individuals carrying the c.1003C>T variant. PRKAR1B expression in the brain was demonstrated during human embryonal development. Additionally, in vitro analyses revealed altered basal PKA activity in cells transfected with variant-harboring PRKAR1B expression constructs. CONCLUSION: Our study provides strong evidence for a PRKAR1B-related neurodevelopmental disorder.
Asunto(s)
Apraxias , Trastorno del Espectro Autista , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Trastorno del Espectro Autista/genética , Subunidad RIbeta de la Proteína Quinasa Dependiente de AMP Cíclico , Femenino , Humanos , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Dolor , EmbarazoRESUMEN
Mutations that alter signaling of RAS/MAPK-family proteins give rise to a group of Mendelian diseases known as RASopathies. However, among RASopathies, the matrix of genotype-phenotype relationships is still incomplete, in part because there are many RAS-related proteins and in part because the phenotypic consequences may be variable and/or pleiotropic. Here, we describe a cohort of ten cases, drawn from six clinical sites and over 16,000 sequenced probands, with de novo protein-altering variation in RALA, a RAS-like small GTPase. All probands present with speech and motor delays, and most have intellectual disability, low weight, short stature, and facial dysmorphism. The observed rate of de novo RALA variants in affected probands is significantly higher (p = 4.93 x 10(-11)) than expected from the estimated random mutation rate. Further, all de novo variants described here affect residues within the GTP/GDP-binding region of RALA; in fact, six alleles arose at only two codons, Val25 and Lys128. The affected residues are highly conserved across both RAL- and RAS-family genes, are devoid of variation in large human population datasets, and several are homologous to positions at which disease-associated variants have been observed in other GTPase genes. We directly assayed GTP hydrolysis and RALA effector-protein binding of the observed variants, and found that all but one tested variant significantly reduced both activities compared to wild-type. The one exception, S157A, reduced GTP hydrolysis but significantly increased RALA-effector binding, an observation similar to that seen for oncogenic RAS variants. These results show the power of data sharing for the interpretation and analysis of rare variation, expand the spectrum of molecular causes of developmental disability to include RALA, and provide additional insight into the pathogenesis of human disease caused by mutations in small GTPases.
Asunto(s)
Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Proteínas Mitocondriales/genética , Mutación , Dominios y Motivos de Interacción de Proteínas/genética , Proteínas de Unión al GTP ral/genética , Proteínas ras/genética , Facies , Genotipo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Proteínas Mitocondriales/química , Modelos Moleculares , Mutación Missense , Fenotipo , Conformación Proteica , Proteínas de Unión al GTP ral/química , Proteínas ras/químicaRESUMEN
Congenital muscular dystrophies display a wide phenotypic and genetic heterogeneity. The combination of clinical, biochemical, and molecular genetic findings must be considered to obtain the precise diagnosis and provide appropriate genetic counselling. Here we report five individuals from four families presenting with variable clinical features including muscular dystrophy with a reduction in dystroglycan glycosylation, short stature, intellectual disability, and cataracts, overlapping both the dystroglycanopathies and Marinesco-Sjögren syndrome. Whole-exome sequencing revealed homozygous missense and compound heterozygous mutations in INPP5K in the affected members of each family. INPP5K encodes the inositol polyphosphate-5-phosphatase K, also known as SKIP (skeletal muscle and kidney enriched inositol phosphatase), which is highly expressed in the brain and muscle. INPP5K localizes to both the endoplasmic reticulum and to actin ruffles in the cytoplasm. It has been shown to regulate myoblast differentiation and has also been implicated in protein processing through its interaction with the ER chaperone HSPA5/BiP. We show that morpholino-mediated inpp5k loss of function in the zebrafish results in shortened body axis, microphthalmia with disorganized lens, microcephaly, reduced touch-evoked motility, and highly disorganized myofibers. Altogether these data demonstrate that mutations in INPP5K cause a congenital muscular dystrophy syndrome with short stature, cataracts, and intellectual disability.
Asunto(s)
Distrofia Muscular de Cinturas/genética , Monoéster Fosfórico Hidrolasas/genética , Degeneraciones Espinocerebelosas/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Niño , Modelos Animales de Enfermedad , Distroglicanos/metabolismo , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Femenino , Estudio de Asociación del Genoma Completo , Glicosilación , Trastornos del Crecimiento/genética , Humanos , Discapacidad Intelectual/genética , Masculino , Microcefalia/genética , Músculo Esquelético/metabolismo , Mutación , Linaje , Adulto Joven , Pez Cebra/genéticaRESUMEN
Iron-sulfur (Fe-S) clusters are ubiquitous cofactors essential to various cellular processes, including mitochondrial respiration, DNA repair, and iron homeostasis. A steadily increasing number of disorders are being associated with disrupted biogenesis of Fe-S clusters. Here, we conducted whole-exome sequencing of patients with optic atrophy and other neurological signs of mitochondriopathy and identified 17 individuals from 13 unrelated families with recessive mutations in FDXR, encoding the mitochondrial membrane-associated flavoprotein ferrodoxin reductase required for electron transport from NADPH to cytochrome P450. In vitro enzymatic assays in patient fibroblast cells showed deficient ferredoxin NADP reductase activity and mitochondrial dysfunction evidenced by low oxygen consumption rates (OCRs), complex activities, ATP production and increased reactive oxygen species (ROS). Such defects were rescued by overexpression of wild-type FDXR. Moreover, we found that mice carrying a spontaneous mutation allelic to the most common mutation found in patients displayed progressive gait abnormalities and vision loss, in addition to biochemical defects consistent with the major clinical features of the disease. Taken together, these data provide the first demonstration that germline, hypomorphic mutations in FDXR cause a novel mitochondriopathy and optic atrophy in humans.
Asunto(s)
Ferredoxinas/genética , Atrofia Óptica/genética , Sulfito Reductasa (Ferredoxina)/genética , Adolescente , Alelos , Animales , Niño , Preescolar , Transporte de Electrón , Femenino , Ferredoxinas/metabolismo , Humanos , Lactante , Hierro/metabolismo , Proteínas Hierro-Azufre/genética , Masculino , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Mutagénesis , Mutación , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Linaje , Sulfito Reductasa (Ferredoxina)/metabolismo , Secuenciación del Exoma/métodosRESUMEN
The skill sets of genetic counselors are strongly utilized in industry, as evidenced by 20% of genetic counselors reporting employment within industry in 2016. In addition, industry genetic counselors are expanding their roles, taking on new responsibilities, and creating new opportunities. These advances have impacted the profession as a whole including, but not limited to, genetic counseling training curricula, a shift back to genetic counseling directly to patients, and a growing influence of genetic counselors on industry test offerings. Industry genetic counselors and training programs are working together to address the challenges and opportunities presented by workforce changes and novel interpretations of how genetic counselors' core competencies can be utilized. Counseling of patients by industry genetic counselors has become more commonplace and addresses a need for alternate service delivery models. Industry genetic counselors often provide significant contributions to test development, education, marketing, and interpretation. Beyond these broad examples, individual industry genetic counselors have created unique niches for themselves, using their genetic counseling training combined with unique opportunities offered through industry, as illustrated by genetic counselors' various roles and responsibilities highlighted here.
Asunto(s)
Consejeros , Asesoramiento Genético , Pruebas Genéticas , Genética Médica/organización & administración , Investigación Biomédica , Biotecnología , Biología Computacional , Consejeros/educación , Industria Farmacéutica , Humanos , Medicina de Precisión , Diagnóstico Prenatal , Secuenciación del ExomaRESUMEN
OBJECTIVE: Rett syndrome (RTT) and epileptic encephalopathy (EE) are devastating neurodevelopmental disorders with distinct diagnostic criteria. However, highly heterogeneous and overlapping clinical features often allocate patients into the boundary of the two conditions, complicating accurate diagnosis and appropriate medical interventions. Therefore, we investigated the specific molecular mechanism that allows an understanding of the pathogenesis and relationship of these two conditions. METHODS: We screened novel genetic factors from 34 RTT-like patients without MECP2 mutations, which account for â¼90% of RTT cases, by whole-exome sequencing. The biological function of the discovered variants was assessed in cell culture and Xenopus tropicalis models. RESULTS: We identified a recurring de novo variant in GABAB receptor R2 (GABBR2) that reduces the receptor function, whereas different GABBR2 variants in EE patients possess a more profound effect in reducing receptor activity and are more responsive to agonist rescue in an animal model. INTERPRETATION: GABBR2 is a genetic factor that determines RTT- or EE-like phenotype expression depending on the variant positions. GABBR2-mediated γ-aminobutyric acid signaling is a crucial factor in determining the severity and nature of neurodevelopmental phenotypes. Ann Neurol 2017;82:466-478.
Asunto(s)
Mutación , Receptores de GABA-B/genética , Síndrome de Rett/genética , Espasmos Infantiles/genética , Exoma , Genotipo , Células HEK293 , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Fenotipo , Transducción de Señal/genéticaRESUMEN
Whole exome sequencing (WES) can be used to efficiently identify de novo genetic variants associated with genetically heterogeneous conditions including intellectual disabilities. We have performed WES for 4102 (1847 female; 2255 male) intellectual disability/developmental delay cases and we report five patients with a neurodevelopmental disorder associated with developmental delay, intellectual disability, behavioral problems, hypotonia, speech problems, microcephaly, pachygyria and dysmorphic features in whom we have identified de novo missense and canonical splice site mutations in CSNK2A1, the gene encoding CK2α, the catalytic subunit of protein kinase CK2, a ubiquitous serine/threonine kinase composed of two regulatory (ß) and two catalytic (α and/or α') subunits. Somatic mutations in CSNK2A1 have been implicated in various cancers; however, this is the first study to describe a human condition associated with germline mutations in any of the CK2 subunits.
Asunto(s)
Trastorno Dismórfico Corporal/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Adolescente , Trastorno Dismórfico Corporal/fisiopatología , Quinasa de la Caseína II/genética , Niño , Preescolar , Exoma/genética , Femenino , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Discapacidad Intelectual/patología , Mutación , Trastornos del Neurodesarrollo/fisiopatologíaRESUMEN
Sleep apnea is a common disorder that represents a global public health burden. KCNK3 encodes TASK-1, a K+ channel implicated in the control of breathing, but its link with sleep apnea remains poorly understood. Here we describe a new developmental disorder with associated sleep apnea (developmental delay with sleep apnea, or DDSA) caused by rare de novo gain-of-function mutations in KCNK3. The mutations cluster around the 'X-gate', a gating motif that controls channel opening, and produce overactive channels that no longer respond to inhibition by G-protein-coupled receptor pathways. However, despite their defective X-gating, these mutant channels can still be inhibited by a range of known TASK channel inhibitors. These results not only highlight an important new role for TASK-1 K+ channels and their link with sleep apnea but also identify possible therapeutic strategies.
Asunto(s)
Mutación con Ganancia de Función , Síndromes de la Apnea del Sueño , Niño , Discapacidades del Desarrollo , Humanos , Mutación/genética , Proteínas del Tejido Nervioso , Canales de Potasio de Dominio Poro en Tándem , Síndromes de la Apnea del Sueño/genéticaRESUMEN
Trafficking protein particle (TRAPP) complexes, which include the TRAPPC4 protein, regulate membrane trafficking between lipid organelles in a process termed vesicular tethering. TRAPPC4 was recently implicated in a recessive neurodevelopmental condition in four unrelated families due to a shared c.454+3A>G splice variant. Here, we report 23 patients from 17 independent families with an early-infantile-onset neurodegenerative presentation, where we also identified the homozygous variant hg38:11:119020256 A>G (NM_016146.5:c.454+3A>G) in TRAPPC4 through exome or genome sequencing. No other clinically relevant TRAPPC4 variants were identified among any of over 10,000 patients with neurodevelopmental conditions. We found the carrier frequency of TRAPPC4 c.454+3A>G was 2.4-5.4 per 10,000 healthy individuals. Affected individuals with the homozygous TRAPPC4 c.454+3A>G variant showed profound psychomotor delay, developmental regression, early-onset epilepsy, microcephaly and progressive spastic tetraplegia. Based upon RNA sequencing, the variant resulted in partial exon 3 skipping and generation of an aberrant transcript owing to use of a downstream cryptic splice donor site, predicting a premature stop codon and nonsense mediated decay. These data confirm the pathogenicity of the TRAPPC4 c.454+3A>G variant, and refine the clinical presentation of TRAPPC4-related encephalopathy.
Asunto(s)
Homocigoto , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Empalme del ARN , Proteínas de Transporte Vesicular/genética , Niño , Preescolar , Codón sin Sentido , Exoma , Exones , Femenino , Humanos , Masculino , Microcefalia/genética , Trastornos del Neurodesarrollo/diagnóstico por imagen , Linaje , Sitios de Empalme de ARN , SíndromeRESUMEN
Heterozygous pathogenic variants in the FN1 gene, encoding fibronectin (FN), have recently been shown to be associated with a skeletal disorder in some individuals affected by spondylometaphyseal dysplasia with "corner fractures" (SMD-CF). The most striking feature characterizing SMD-CF is irregularly shaped metaphyses giving the appearance of "corner fractures". An array of secondary features, including developmental coxa vara, ovoid vertebral bodies and severe scoliosis, may also be present. FN is an important extracellular matrix component for bone and cartilage development. Here we report five patients affected by this subtype of SMD-CF caused by five novel FN1 missense mutations: p.Cys123Tyr, p.Cys169Tyr, p.Cys213Tyr, p.Cys231Trp and p.Cys258Tyr. All individuals shared a substitution of a cysteine residue, disrupting disulfide bonds in the FN type-I assembly domains located in the N-terminal assembly region. The abnormal metaphyseal ossification and "corner fracture" appearances were the most remarkable clinical feature in these patients. In addition, generalized skeletal fragility with low-trauma bilateral femoral fractures was identified in one patient. Interestingly, the distal femoral changes in this patient healed with skeletal maturation. Our report expands the phenotypic and genetic spectrum of the FN1-related SMD-CF and emphasizes the importance of FN in bone formation and possibly also in the maintenance of bone strength.
Asunto(s)
Fibronectinas/genética , Osteocondrodisplasias/genética , Adolescente , Adulto , Densidad Ósea/genética , Enfermedades del Desarrollo Óseo/genética , Niño , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Mutación/genética , Fenotipo , Reacción en Cadena de la Polimerasa , Adulto JovenRESUMEN
AMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric AMPARs Ca2+-impermeable, with a linear relationship between current and trans-membrane voltage. Here, we report heterozygous de novo GRIA2 mutations in 28 unrelated patients with intellectual disability (ID) and neurodevelopmental abnormalities including autism spectrum disorder (ASD), Rett syndrome-like features, and seizures or developmental epileptic encephalopathy (DEE). In functional expression studies, mutations lead to a decrease in agonist-evoked current mediated by mutant subunits compared to wild-type channels. When GluA2 subunits are co-expressed with GluA1, most GRIA2 mutations cause a decreased current amplitude and some also affect voltage rectification. Our results show that de-novo variants in GRIA2 can cause neurodevelopmental disorders, complementing evidence that other genetic causes of ID, ASD and DEE also disrupt glutamatergic synaptic transmission.
Asunto(s)
Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Receptores AMPA/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Estudios de Cohortes , Femenino , Heterocigoto , Humanos , Lactante , Mutación con Pérdida de Función , Imagen por Resonancia Magnética , Masculino , Trastornos del Neurodesarrollo/diagnóstico por imagen , Adulto JovenRESUMEN
Using whole-exome sequencing, we identified seven unrelated individuals with global developmental delay, hypotonia, dysmorphic facial features, and an increased frequency of short stature, ataxia, and autism with de novo heterozygous frameshift, nonsense, splice, and missense variants in the Early B-cell Transcription Factor Family Member 3 (EBF3) gene. EBF3 is a member of the collier/olfactory-1/early B-cell factor (COE) family of proteins, which are required for central nervous system (CNS) development. COE proteins are highly evolutionarily conserved and regulate neuronal specification, migration, axon guidance, and dendritogenesis during development and are essential for maintaining neuronal identity in adult neurons. Haploinsufficiency of EBF3 may affect brain development and function, resulting in developmental delay, intellectual disability, and behavioral differences observed in individuals with a deleterious variant in EBF3.
Asunto(s)
Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Adolescente , Secuencia de Aminoácidos/genética , Ataxia/genética , Trastorno Autístico/genética , Niño , Preescolar , Secuencia Conservada/genética , Discapacidades del Desarrollo/genética , Exoma , Femenino , Humanos , Lactante , Discapacidad Intelectual , Masculino , Hipotonía Muscular/genética , Mutación , Trastornos del Neurodesarrollo/genética , Síndrome de Prader-Willi/genética , Secuenciación del Exoma/métodos , Adulto JovenRESUMEN
BACKGROUND: CD14 promoter DNA sequence polymorphisms for the endotoxin receptor gene have been implicated in modulating allergen-specific immunoglobulin (Ig)E responses in randomly selected individuals with atopy. We sought to determine if a single nucleotide polymorphism in the CD14 promoter region is associated with atopy in atopic families, and to assess its influence on serum levels of CD14 and allergen-specific IgE and IgG1 responses. METHODS: We screened 367 members of 91 Caucasian nuclear families with a history of asthma for pulmonary function by spirometry, including methacholine challenge to detect bronchial hyperreactivity, and atopy by serum total IgE and skin prick test to 14 allergens. The CD14 promoter single nucleotide polymorphism was analyzed in DNA isolated from peripheral blood mononuclear cells to identify C/C, C/T and T/T genotypes. Serum tests were done for soluble CD14 (sCD14) and dust mite-specific antibody (Der p 1-IgG1). RESULTS: Serum sCD14 levels were not associated with clinical phenotypes (asthma, bronchial hyperreactivity or atopy). However, sCD14 levels were inversely related to both allergen-specific IgE and Der p 1-IgG1 production, but only among those with evidence of atopic sensitization. Linear regression analysis, accounting for random family effects, demonstrated a higher production of allergen-specific IgE or Der p 1-IgG1 associated with the T/T genotype and a lower level of specific IgE and IgG1 production associated with sCD14 levels. CONCLUSIONS: An element of the innate immune system (CD14) has profound effects upon modulating the acquired allergen-specific immunoglobulin responses among those with an inherited atopic predisposition.
Asunto(s)
Alérgenos/inmunología , Asma/genética , Asma/inmunología , Inmunoglobulina E/inmunología , Inmunoglobulina G/inmunología , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/inmunología , Adolescente , Adulto , Anciano , Antígenos Dermatofagoides/sangre , Antígenos Dermatofagoides/inmunología , Proteínas de Artrópodos , Niño , Cisteína Endopeptidasas , Femenino , Predisposición Genética a la Enfermedad , Humanos , Inmunoglobulina E/sangre , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Pruebas CutáneasRESUMEN
The heterogeneous group of disorders known as oculocutaneous albinism (OCA) shares cutaneous and ocular hypopigmentation associated with common developmental abnormalities of the eye. Mutations of at least 11 loci produce this phenotype. The majority of affected individuals develop some cutaneous melanin; this is predominantly seen as yellow/blond hair, whereas fewer have brown hair. The OCA phenotype is dependent on the constitutional pigmentation background of the family, with more OCA pigmentation found in families with darker constitutional pigmentation, which indicates that other genes may modify the OCA phenotype. Sequence variation in the melanocortin-1 receptor (MC1R) gene is associated with red hair in the normal population, but red hair is unusual in OCA. We identified eight probands with OCA who had red hair at birth. Mutations in the P gene were responsible for classic phenotype of oculocutaneous albinism type 2 (OCA2) in all eight, and mutations in the MC1R gene were responsible for the red (rather than yellow/blond) hair in the six of eight who continued to have red hair after birth. This is the first demonstration of a gene modifying the OCA phenotype in humans.