Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nucleic Acids Res ; 52(6): 3088-3105, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38300793

RESUMEN

Mitochondrial DNA (mtDNA) recombination in animals has remained enigmatic due to its uniparental inheritance and subsequent homoplasmic state, which excludes the biological need for genetic recombination, as well as limits tools to study it. However, molecular recombination is an important genome maintenance mechanism for all organisms, most notably being required for double-strand break repair. To demonstrate the existence of mtDNA recombination, we took advantage of a cell model with two different types of mitochondrial genomes and impaired its ability to degrade broken mtDNA. The resulting excess of linear DNA fragments caused increased formation of cruciform mtDNA, appearance of heterodimeric mtDNA complexes and recombinant mtDNA genomes, detectable by Southern blot and by long range PacBio® HiFi sequencing approach. Besides utilizing different electrophoretic methods, we also directly observed molecular complexes between different mtDNA haplotypes and recombination intermediates using transmission electron microscopy. We propose that the known copy-choice recombination by mitochondrial replisome could be sufficient for the needs of the small genome, thus removing the requirement for a specialized mitochondrial recombinase. The error-proneness of this system is likely to contribute to the formation of pathological mtDNA rearrangements.


Asunto(s)
Mitocondrias , Recombinación Genética , Animales , Mitocondrias/genética , Mitocondrias/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Reparación del ADN , Replicación del ADN/genética , Mamíferos/genética
2.
Antimicrob Agents Chemother ; 66(1): e0162321, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34723631

RESUMEN

Enterococcus faecium is a significant multidrug-resistant pathogen. Bacteriophage cocktails are being proposed to complement antibiotic therapy. After a screen of 8 E. faecium strains against 4 phages, 2 phages (113 and 9184) with the broadest host ranges were chosen for further experiments. Transmission electron microscopy, whole-genome sequencing, comparative genome analyses, and time-kill analyses were performed. Daptomycin (DAP) plus the phage cocktail (113 [myophage] and 9184 [siphopage]) showed bactericidal activity in most regimens, while DAP addition prevented phage 9184 resistance against daptomycin-nonsusceptible E. faecium.


Asunto(s)
Bacteriófagos , Daptomicina , Enterococcus faecium , Antibacterianos/farmacología , Bacteriófagos/genética , Daptomicina/farmacología , Enterococcus faecium/genética , Pruebas de Sensibilidad Microbiana
3.
Nucleic Acids Res ; 44(19): 9369-9380, 2016 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-27608724

RESUMEN

The formation of DNA loops at chromosome ends (t-loops) and the transcription of telomeres producing G-rich RNA (TERRA) represent two central features of telomeres. To explore a possible link between them we employed artificial human telomeres containing long arrays of TTAGGG repeats flanked by the T7 or T3 promoters. Transcription of these DNAs generates a high frequency of t-loops within individual molecules and homologous recombination events between different DNAs at their telomeric sequences. T-loop formation does not require a single strand overhang, arguing that both terminal strands insert into the preceding duplex. The loops are very stable and some RNase H resistant TERRA remains at the t-loop, likely adding to their stability. Transcription of DNAs containing TTAGTG or TGAGTG repeats showed greatly reduced loop formation. While in the cell multiple pathways may lead to t-loop formation, the pathway revealed here does not depend on the shelterins but rather on the unique character of telomeric DNA when it is opened for transcription. Hence, telomeric sequences may have evolved to facilitate their ability to loop back on themselves.


Asunto(s)
Recombinación Homóloga , Conformación de Ácido Nucleico , Telómero/genética , Transcripción Genética , Humanos , Mutación , Unión Proteica , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo
4.
PLoS Genet ; 11(2): e1004985, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25693201

RESUMEN

Mitochondrial DNA (mtDNA) encodes respiratory complex subunits essential to almost all eukaryotes; hence respiratory competence requires faithful duplication of this molecule. However, the mechanism(s) of its synthesis remain hotly debated. Here we have developed Caenorhabditis elegans as a convenient animal model for the study of metazoan mtDNA synthesis. We demonstrate that C. elegans mtDNA replicates exclusively by a phage-like mechanism, in which multimeric molecules are synthesized from a circular template. In contrast to previous mammalian studies, we found that mtDNA synthesis in the C. elegans gonad produces branched-circular lariat structures with multimeric DNA tails; we were able to detect multimers up to four mtDNA genome unit lengths. Further, we did not detect elongation from a displacement-loop or analogue of 7S DNA, suggesting a clear difference from human mtDNA in regard to the site(s) of replication initiation. We also identified cruciform mtDNA species that are sensitive to cleavage by the resolvase RusA; we suggest these four-way junctions may have a role in concatemer-to-monomer resolution. Overall these results indicate that mtDNA synthesis in C. elegans does not conform to any previously documented metazoan mtDNA replication mechanism, but instead are strongly suggestive of rolling circle replication, as employed by bacteriophages. As several components of the metazoan mitochondrial DNA replisome are likely phage-derived, these findings raise the possibility that the rolling circle mtDNA replication mechanism may be ancestral among metazoans.


Asunto(s)
Replicación del ADN/genética , ADN Mitocondrial/genética , Genoma Mitocondrial , Mitocondrias/genética , Animales , Caenorhabditis elegans/genética , ADN Mitocondrial/biosíntesis , ADN Polimerasa Dirigida por ADN/genética , Gónadas/crecimiento & desarrollo , Humanos , Complejos Multienzimáticos/genética , Recombinasas/genética
5.
J Biol Chem ; 290(5): 2539-45, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25471368

RESUMEN

Using purified replication factors encoded by herpes simplex virus type 1 and a 70-base minicircle template, we obtained robust DNA synthesis with leading strand products of >20,000 nucleotides and lagging strand fragments from 600 to 9,000 nucleotides as seen by alkaline gel electrophoresis. ICP8 was crucial for the synthesis on both strands. Visualization of the deproteinized products using electron microscopy revealed long, linear dsDNAs, and in 87%, one end, presumably the end with the 70-base circle, was single-stranded. The remaining 13% had multiple single-stranded segments separated by dsDNA segments 500 to 1,000 nucleotides in length located at one end. These features are diagnostic of the trombone mechanism of replication. Indeed, when the products were examined with the replication proteins bound, a dsDNA loop was frequently associated with the replication complex located at one end of the replicated DNA. Furthermore, the frequency of loops correlated with the fraction of DNA undergoing Okazaki fragment synthesis.


Asunto(s)
Replicación del ADN/genética , ADN Viral/genética , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Replicación del ADN/fisiología , ADN Viral/fisiología , ADN Viral/ultraestructura , Proteínas de Unión al ADN/metabolismo , Herpesvirus Humano 1/ultraestructura , Microscopía Electrónica , Proteínas Virales/metabolismo
6.
Proc Natl Acad Sci U S A ; 110(38): E3587-94, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24003117

RESUMEN

Type IA DNA topoisomerases work with a unique mechanism of strand passage through an enzyme-bridged, ssDNA gate, thus enabling them to carry out diverse reactions in processing structures important for replication, recombination, and repair. Here we report a unique reaction mediated by an archaeal type IA topoisomerase, the synthesis and dissolution of hemicatenanes. We cloned, purified, and characterized an unusual type IA enzyme from a hyperthermophilic archaeum, Nanoarchaeum equitans, which is split into two pieces. The recombinant heterodimeric enzyme has the expected activities in its preference of relaxing negatively supercoiled DNA. Its amino acid sequence and cleavage site sequence analysis suggest that it is topoisomerase III, and therefore we named it "NeqTop3." At high enzyme concentrations, NeqTop3 can generate high-molecular-weight DNA networks. Biochemical and electron microscopic data indicate that the DNA networks are connected through hemicatenane linkages. The hemicatenane formation likely is mediated by the single-strand passage through denatured bubbles in the substrate DNA under high temperature. NeqTop3 at lower concentrations can reverse hemicatenanes. A complex of human topoisomerase 3α, Bloom helicase, and RecQ-mediated genome instability protein 1 and 2 can partially disentangle the hemicatenane network. Both the formation and dissolution of hemicatenanes by type IA topoisomerases demonstrate that these enzymes have an important role in regulating intermediates from replication, recombination, and repair.


Asunto(s)
Proteínas Portadoras/metabolismo , Catenanos/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Nanoarchaeota/enzimología , Proteínas Nucleares/metabolismo , RecQ Helicasas/metabolismo , Secuencia de Bases , Proteínas Portadoras/genética , Clonación Molecular , ADN-Topoisomerasas de Tipo I/genética , Proteínas de Unión al ADN/genética , Humanos , Microscopía Electrónica , Datos de Secuencia Molecular , Proteínas Nucleares/genética , RecQ Helicasas/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
7.
Proc Natl Acad Sci U S A ; 110(46): 18472-7, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24187148

RESUMEN

A problem in understanding eukaryotic DNA mismatch repair (MMR) mechanisms is linking insights into MMR mechanisms from genetics and cell-biology studies with those from biochemical studies of MMR proteins and reconstituted MMR reactions. This type of analysis has proven difficult because reconstitution approaches have been most successful for human MMR whereas analysis of MMR in vivo has been most advanced in the yeast Saccharomyces cerevisiae. Here, we describe the reconstitution of MMR reactions using purified S. cerevisiae proteins and mispair-containing DNA substrates. A mixture of MutS homolog 2 (Msh2)-MutS homolog 6, Exonuclease 1, replication protein A, replication factor C-Δ1N, proliferating cell nuclear antigen and DNA polymerase δ was found to repair substrates containing TG, CC, +1 (+T), +2 (+GC), and +4 (+ACGA) mispairs and either a 5' or 3' strand interruption with different efficiencies. The Msh2-MutS homolog 3 mispair recognition protein could substitute for the Msh2-Msh6 mispair recognition protein and showed a different specificity of repair of the different mispairs whereas addition of MutL homolog 1-postmeiotic segregation 1 had no affect on MMR. Repair was catalytic, with as many as 11 substrates repaired per molecule of Exo1. Repair of the substrates containing either a 5' or 3' strand interruption occurred by mispair binding-dependent 5' excision and subsequent resynthesis with excision tracts of up to ~2.9 kb occurring during the repair of the substrate with a 3' strand interruption. The availability of this reconstituted MMR reaction now makes possible detailed biochemical studies of the wealth of mutations identified that affect S. cerevisiae MMR.


Asunto(s)
Reparación de la Incompatibilidad de ADN/genética , ADN de Hongos/metabolismo , Inestabilidad Genómica/genética , Complejos Multiproteicos/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Catálisis , ADN Polimerasa III/metabolismo , Cartilla de ADN/genética , ADN de Hongos/genética , Exodesoxirribonucleasas/metabolismo , Microscopía Electrónica de Transmisión , Complejos Multiproteicos/genética , Proteína 2 Homóloga a MutS/genética , Reacción en Cadena de la Polimerasa , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación A/metabolismo
8.
Nucleic Acids Res ; 41(5): e60, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23275569

RESUMEN

Previously, we published a method for creating a novel DNA substrate, the double Holliday junction substrate. This substrate contains two Holliday junctions that are mobile, topologically constrained and separated by a distance comparable with conversion tract lengths. Although useful for studying late stage homologous recombination in vitro, construction of the substrate requires significant effort. In particular, there are three bottlenecks: (i) production of large quantities of single-stranded DNA; (ii) the loss of a significant portion of the DNA following the recombination step; and (iii) the loss of DNA owing to inefficient gel extraction. To address these limitations, we have made the following changes to the protocol: (i) use of a helper plasmid, rather than exogenous helper phage, to produce single-stranded DNA; (ii) use of the unidirectional C31 integrase system in place of the bidirectional Cre recombinase reaction; and (iii) gel extraction by DNA diffusion. Here, we describe the changes made to the materials and methods and characterize the substrates that can be produced, including migratable single Holliday junctions, hemicatenanes and a quadruple Holliday junction substrate.


Asunto(s)
ADN Cruciforme/biosíntesis , Sitios de Ligazón Microbiológica , Bacteriófago M13/genética , Clonación Molecular , ADN Cruciforme/genética , ADN Cruciforme/ultraestructura , Escherichia coli , Integrasas/genética , Integrasas/metabolismo , Plásmidos/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
9.
bioRxiv ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39211251

RESUMEN

Translation of mammalian telomeric G-rich RNA via the Repeat Associated non-AUG translation mechanism can produce two dipeptide repeat proteins: repeating valine-arginine (VR) and repeating glycine-leucine (GL). Their potentially toxic nature suggests that one or both must play a needed role in the cell. Using light microscopy combined with antibody staining we discovered that cultured human cells stain brightly for VR during mitosis with VR staining co-localizing with ribosomes. In vitro , VR protein represses translation in a firefly luciferase assay. Affinity purification combined with mass spectrometry identified ribosomal proteins as the major class of VR interacting proteins. Extension to mouse embryonic cerebral cortical development showed strong staining in the ventricular zone where high mitotic index neural progenitor cells proliferate and in the cortical plate where new neurons settle. These observations point to VR playing a key role in mitosis very possibly depressing global translation, a role mediated by the telomere. Teaser: The telomeric valine-arginine dipeptide repeat protein is highly expressed in mitotic cells in culture and in mouse embryonic neural tissue.

10.
mBio ; 15(9): e0192224, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39140770

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic caused the biggest public health crises in recent history. Many expect future coronavirus introductions into the human population. Hence, it is essential to understand the basic biology of these viruses. In natural infection, the SARS-CoV-2 Spike (S) glycoprotein is co-expressed with all other viral proteins, which modify cellular compartments to maximize virion assembly. By comparison, most of S is degraded when the protein is expressed in isolation, as in current molecular vaccines. To probe the maturation pathway of S, we redirected its maturation by fusing S to the tetraspanin protein CD81. CD81 is a defining constituent of extracellular vesicles (EVs) or exosomes. EVs are generated in large numbers by all cells, extruded into blood and lymph, and transfer cargo between cells and systemically (estimated 1012 EVs per mL plasma). EVs, like platelets, can be transfused between unrelated donors. When fusing the proline-stabilized form of strain Delta S into the flexible, large extracellular loop of CD81 rather than being degraded in the lysosome, S was extruded into EVs. CD81-S fusion containing EVs were produced in large numbers and could be isolated to high purity. Purified CD81::S EVs bound ACE2, and S displayed on individual EV was observed by cryogenic electron microscopy (EM). The CD81::S-fusion EVs were non-toxic and elicited an anti-S trimer and anti-RBD antibody response in mice. This report shows a design path to maximize viral glycoprotein assembly and release without relying on the co-expression of potentially pathogenic nonstructural viral proteins. IMPORTANCE: The severe acute respiratory syndrome coronavirus 2 pandemic caused the biggest public health crises in recent history. To understand the maturation pathway of S, we fused S to the tetraspanin protein CD81. The resulting molecule is secreted in extracellular vesicles and induces antibodies in mice. This may be a general design path for viral glycoprotein vaccines.


Asunto(s)
SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Tetraspanina 28 , Animales , Humanos , Ratones , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , COVID-19/virología , COVID-19/inmunología , Vesículas Extracelulares/metabolismo , Transporte de Proteínas , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Tetraspanina 28/metabolismo , Tetraspanina 28/genética
11.
J Biol Chem ; 287(12): 8724-36, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22275364

RESUMEN

RAD51 mediates homologous recombination by forming an active DNA nucleoprotein filament (NPF). A conserved aspartate that forms a salt bridge with the ATP γ-phosphate is found at the nucleotide-binding interface between RAD51 subunits of the NPF known as the ATP cap. The salt bridge accounts for the nonphysiological cation(s) required to fully activate the RAD51 NPF. In contrast, RecA homologs and most RAD51 paralogs contain a conserved lysine at the analogous structural position. We demonstrate that substitution of human RAD51(Asp-316) with lysine (HsRAD51(D316K)) decreases NPF turnover and facilitates considerably improved recombinase functions. Structural analysis shows that archaebacterial Methanococcus voltae RadA(D302K) (MvRAD51(D302K)) and HsRAD51(D316K) form extended active NPFs without salt. These studies suggest that the HsRAD51(Asp-316) salt bridge may function as a conformational sensor that enhances turnover at the expense of recombinase activity.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Methanococcus/enzimología , Nucleoproteínas/química , Recombinasa Rad51/química , Recombinasa Rad51/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Cristalografía por Rayos X , Humanos , Methanococcus/química , Methanococcus/genética , Datos de Secuencia Molecular , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Estabilidad Proteica , Recombinasa Rad51/genética , Alineación de Secuencia
12.
J Biol Chem ; 287(38): 32206-15, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22815473

RESUMEN

Double-stranded regions of the telomeres are recognized by proteins containing Myb-like domains conferring specificity toward telomeric repeats. Although biochemical and structural studies revealed basic molecular principles involved in DNA binding, relatively little is known about evolutionary pathways leading to various types of Myb domain-containing proteins in divergent species of eukaryotes. Recently we identified a novel type of telomere-binding protein YlTay1p from the yeast Yarrowia lipolytica containing two Myb domains (Myb1, Myb2) very similar to the Myb domain of mammalian TRF1 and TRF2. In this study we prepared mutant versions of YlTay1p lacking Myb1, Myb2, or both Myb domains and found that YlTay1p carrying either Myb domain exhibits preferential affinity to both Y. lipolytica (GGGTTAGTCA)(n) and human (TTAGGG)(n) telomeric sequences. Quantitative measurements of the protein binding to telomeric DNA revealed that the presence of both Myb domains is required for a high affinity of YlTay1p to either telomeric repeat. Additionally, we performed detailed thermodynamic analysis of the YlTay1p interaction with its cognate telomeric DNA, which is to our knowledge the first energetic description of a full-length telomeric-protein binding to DNA. Interestingly, when compared with human TRF1 and TRF2 proteins, YlTay1p exhibited higher affinity not only for Y. lipolytica telomeres but also for human telomeric sequences. The duplication of the Myb domain region in YlTay1p thus produces a synergistic effect on its affinity toward the cognate telomeric sequence, alleviating the need for homodimerization observed in TRF-like proteins possessing a single Myb domain.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Proto-Oncogénicas c-myb/química , Proteína 1 de Unión a Repeticiones Teloméricas/química , Yarrowia/metabolismo , Secuencia de Aminoácidos , Anisotropía , Biofisica/métodos , Calorimetría/métodos , Mapeo Cromosómico , Evolución Molecular , Proteínas Fúngicas/metabolismo , Humanos , Cinética , Microscopía Fluorescente/métodos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Telómero/ultraestructura , Termodinámica
13.
J Extracell Vesicles ; 12(6): e12327, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37272197

RESUMEN

Purifying extracellular vesicles (EVs) has been challenging because EVs are heterogeneous in cargo yet share similar sizes and densities. Most surface marker-based affinity separation methods are limited to research or diagnostic scales. We report that heparin chromatography can separate purified EVs into two distinct subpopulations as ascertained by MS/MS: a non-heparin-binding (NHB) fraction that contains classical EV markers such as tetraspanins and a heparin-binding (HB) fraction enriched in fibronectins and histones. Both fractions were similarly fusogenic but induced different transcriptional responses in endothelial cells. While EVs that were purified by conventional, non-affinity methods alone induced ERK1/2 phosphorylation and Ki67, the NHB fraction did not. This result suggests heparin chromatography as an additional novel fractionation step that is inherently scalable, does not lead to loss of material, and separates inflammatory and pyrogenic EVs from unreactive EVs, which will improve clinical applications.


Asunto(s)
Vesículas Extracelulares , Heparina , Heparina/farmacología , Heparina/análisis , Heparina/química , Espectrometría de Masas en Tándem , Células Endoteliales , Vesículas Extracelulares/química , Cromatografía de Afinidad/métodos
14.
J Extracell Vesicles ; 11(3): e12191, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35234354

RESUMEN

Extracellular vesicles (EVs) are secreted from all cell types and are intimately involved in tissue homeostasis. They are being explored as vaccine and gene therapy platforms, as well as potential biomarkers. As their size is below the diffraction limit of light microscopy, direct visualizations have been daunting and single-particle studies under physiological conditions have been hampered. Here, direct stochastic optical reconstruction microscopy (dSTORM) was employed to visualize EVs in three-dimensions and to localize molecule clusters such as the tetraspanins CD81 and CD9 on the surface of individual EVs. These studies demonstrate the existence of membrane microdomains on EVs. These were confirmed by Cryo-EM. Individual particle visualization provided insights into the heterogeneity, structure, and complexity of EVs not previously appreciated.


Asunto(s)
Vesículas Extracelulares , Transporte Biológico , Biomarcadores/análisis , Vesículas Extracelulares/química , Microscopía , Tetraspaninas/análisis
15.
ACS Nano ; 16(5): 7309-7322, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35504018

RESUMEN

An abdominal aortic aneurysm (AAA) is a localized dilation of the aorta located in the abdomen that poses a severe risk of death when ruptured. The cause of AAA is not fully understood, but degradation of medial elastin due to elastolytic matrix metalloproteinases is a key step leading to aortic dilation. Current therapeutic interventions are limited to surgical repair to prevent catastrophic rupture. Here, we report the development of injectable supramolecular nanofibers using peptide amphiphile molecules designed to localize to AAA by targeting fragmented elastin, matrix metalloproteinase 2 (MMP-2), and membrane type 1 matrix metalloproteinase. We designed four targeting peptide sequences from X-ray crystallographic data and incorporated them into PA molecules via solid phase peptide synthesis. After coassembling targeted and diluent PAs at different molar ratios, we assessed their ability to form nanofibers using transmission electron microscopy and to localize to AAA in male and female Sprague-Dawley rats using light sheet fluorescence microscopy. We found that three formulations of the PA nanofibers were able to localize to AAA tissue, but the MMP-2 targeting PA substantially outperformed the other nanofibers. Additionally, we demonstrated that the MMP-2 targeting PA nanofibers had an optimal dose of 5 mg (∼12 mg/kg). Our results show that there was not a significant difference in targeting between male and female Sprague-Dawley rats. Given the ability of the MMP-2 targeting PA nanofiber to localize to AAA tissue, future studies will investigate potential diagnostic and targeted drug delivery applications for AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal , Nanofibras , Ratas , Animales , Masculino , Femenino , Metaloproteinasa 2 de la Matriz/metabolismo , Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Elastina , Nanofibras/química , Ratas Sprague-Dawley , Péptidos/metabolismo , Aorta Abdominal/metabolismo
16.
J Biol Chem ; 285(49): 38078-92, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-20923774

RESUMEN

Inspection of the complete genome of the yeast Yarrowia lipolytica for the presence of genes encoding homologues of known telomere-binding proteins surprisingly revealed no counterparts of typical yeast Myb domain-containing telomeric factors including Rap1 or Taz1. Instead, we identified a gene, YALIOD10923g, encoding a protein containing two Myb domains, exhibiting a high degree of similarity to the Myb domain of human telomeric proteins TRF1 and TRF2 and homologous to an essential fission yeast protein Mug152 whose expression is elevated during meiosis. The protein, which we named Tay1p (telomere-associated in Yarrowia lipolytica 1), was purified for biochemical studies. Using a model Y. lipolytica telomere, we demonstrate that the protein preferentially binds to Y. lipolytica telomeric tracts. Tay1p binds along the telomeric tract as dimers and larger oligomers, and it is able to remodel the telomeric DNA into both looped structures and synaptic complexes of two model telomere DNAs. The ability of Tay1p to induce dimerization of telomeres in vitro goes in line with its oligomeric nature, where each oligomer can employ several Myb domains to form intermolecular telomere clusters. We also provide experimental evidence that Tay1p may be associated with Y. lipolytica telomeres in vivo. Together with its homologues from Schizosaccharomyces pombe and several basidiomycetous fungi (Sánchez-Alonso, P., and Guzman, P. (2008) Fungal Genet. Biol. 45, S54-S62), Tay1p constitutes a novel family of putative telomeric factors whose analysis may be instrumental in understanding the function and evolution of double-stranded DNA telomeric proteins.


Asunto(s)
ADN de Hongos/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Yarrowia/metabolismo , Basidiomycota/genética , Basidiomycota/metabolismo , ADN de Hongos/genética , Dimerización , Proteínas Fúngicas/genética , Humanos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Homología de Secuencia de Aminoácido , Telómero/genética , Proteínas de Unión a Telómeros/genética , Yarrowia/genética
17.
Biomaterials ; 274: 120862, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33975274

RESUMEN

Smoke inhalation injury is associated with significant mortality and current therapies remain supportive. The purpose of our study was to identify proteins upregulated in the lung after smoke inhalation injury and develop peptide amphiphile nanofibers that target these proteins. We hypothesize that nanofibers targeted to angiotensin-converting enzyme or receptor for advanced glycation end products will localize to smoke-injured lungs. METHODS: Five targeting sequences were incorporated into peptide amphiphile monomers methodically to optimize nanofiber formation. Nanofiber formation was assessed by conventional transmission electron microscopy. Rats received 8 min of wood smoke. Levels of angiotensin-converting enzyme and receptor for advanced glycation end products were evaluated by immunofluorescence. Rats received the targeted nanofiber 23 h after injury via tail vein injection. Nanofiber localization was determined by fluorescence quantification. RESULTS: Peptide amphiphile purity (>95%) and nanofiber formation were confirmed. Target proteins were increased in smoke inhalation versus sham (p < 0.001). After smoke inhalation and injection of targeted nanofibers, we found a 10-fold increase in angiotensin-converting enzyme-targeted nanofiber localization to lung (p < 0.001) versus sham with minimal localization of non-targeted nanofiber (p < 0.001). CONCLUSIONS: We synthesized, characterized, and evaluated systemically delivered targeted nanofibers that localized to the site of smoke inhalation injury in vivo. Angiotensin-converting enzyme-targeted nanofibers serve as the foundation for developing a novel nanotherapeutic that treats smoke inhalation lung injury.


Asunto(s)
Nanofibras , Lesión por Inhalación de Humo , Animales , Pulmón , Péptidos , Ratas , Humo
18.
Front Genet ; 10: 792, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31475042

RESUMEN

Telomere loops (t-loops) are formed at the ends of chromosomes in species ranging from humans to worms, plants, and with genetic manipulation, some yeast. Recent in vitro studies demonstrated that transcription of telomeric DNA leads to highly efficient t-loop formation. It was also shown that both DNA termini are inserted into the preceding DNA to generate a highly stable t-loop junction. Furthermore, some telomeric RNA remains present at the junction, potentially acting as a plug to further protect and stabilize the t-loop. Modeling the loop junction reveals two mechanisms by which the canonical chromosomal replication factors could extend the telomere in the absence of telomerase. One mechanism would utilize the annealed 3' terminus as a de novo replication origin. In vitro evidence for the ability of the t-loop to prime telomere extension using the T7 replication factors is presented. A second mechanism would involve resolution of the Holliday junction present in the t-loop bubble by factors such as GEN1 to generate a rolling circle template at the extreme terminus of the telomere. This could lead to large expansions of the telomeric tract. Here, we propose that telomeres evolved as terminal elements containing long arrays of short nucleotide repeats due to the ability of such arrays to fold back into loops and self-prime their replicative extension. In this view, telomerase may have evolved later to provide a more precise mechanism of telomere maintenance. Both pathways have direct relevance to the alternative lengthening of telomeres (ALT) pathway. This view also provides a possible mechanism for the very large repeat expansions observed in nucleotide repeat diseases such as Fragile X syndrome, myotonic dystrophy, familial amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). The evolution of telomeres is discussed in the framework of these models.

19.
Astrobiology ; 8(2): 215-28, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18366344

RESUMEN

In this study, we utilized transmission electron microscopy to examine the contents of fluid inclusions in halite (NaCl) and solid halite crystals collected 650 m below the surface from the Late Permian Salado Formation in southeastern New Mexico (USA). The halite has been isolated from contaminating groundwater since deposition approximately 250 Ma ago. We show that abundant cellulose microfibers are present in the halite and appear remarkably intact. The cellulose is in the form of 5 nm microfibers as well as composite ropes and mats, and was identified by resistance to 0.5 N NaOH treatment and susceptibility to cellulase enzyme treatment. These cellulose microfibers represent the oldest native biological macromolecules to have been directly isolated, examined biochemically, and visualized (without growth or replication) to date. This discovery points to cellulose as an ideal macromolecular target in the search for life on other planets in our Solar System.


Asunto(s)
Celulosa/química , Origen de la Vida , Planetas , Cloruro de Sodio/química , Celulosa/ultraestructura , Cristalización , Exobiología , Microscopía Electrónica , New Mexico , Paleontología , Cloruro de Sodio/aislamiento & purificación
20.
Cell Rep ; 23(12): 3419-3428, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29924986

RESUMEN

DNA interstrand crosslinks (ICLs) are extremely cytotoxic, but the mechanism of their repair remains incompletely understood. Using Xenopus egg extracts, we previously showed that repair of a cisplatin ICL is triggered when two replication forks converge on the lesion. After CDC45/MCM2-7/GINS (CMG) ubiquitylation and unloading by the p97 segregase, FANCI-FANCD2 promotes DNA incisions by XPF-ERCC1, leading to ICL unhooking. Here, we report that, during this cell-free ICL repair reaction, one of the two converged forks undergoes reversal. Fork reversal fails when CMG unloading is inhibited, but it does not require FANCI-FANCD2. After one fork has undergone reversal, the opposing fork that still abuts the ICL undergoes incisions. Our data show that replication fork reversal at an ICL requires replisome disassembly. We present a revised model of ICL repair that involves a reversed fork intermediate.


Asunto(s)
Reactivos de Enlaces Cruzados/metabolismo , ADN Helicasas/metabolismo , Reparación del ADN , Replicación del ADN , ADN/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , Extractos Celulares , Proteínas de Unión al ADN/metabolismo , Óvulo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA