Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Opin Chem Biol ; 29: 87-93, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26517566

RESUMEN

The cell membrane is a highly complex designed material with remarkable physicochemical properties; comprised mainly of lipid moieties, it is capable of self-assembling, changing morphology, housing a range of distinct proteins, and withstanding electrical, chemical and mechanical perturbations. All of these fundamental cellular functions occurring within a 5nm thick film is an astonishing feat of engineering, made possible due to the interplay of a variety of intermolecular forces. Elucidating how the interactions within the chemically distinct partners influence the nanomechanical properties of the membrane is essential to gain a comprehensive understanding of a wide-variety of both force-triggered and force-sensing mechanisms that dictate essential cellular processes.


Asunto(s)
Membrana Celular/metabolismo , Membrana Dobles de Lípidos/metabolismo , Mecanotransducción Celular , Animales , Fenómenos Biomecánicos , Biofisica/métodos , Membrana Celular/química , Humanos , Membrana Dobles de Lípidos/química , Microscopía de Fuerza Atómica/métodos
2.
PLoS One ; 8(5): e63633, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23671687

RESUMEN

Nesprin-1 and nesprin-2 are nuclear envelope (NE) proteins characterized by a common structure of an SR (spectrin repeat) rod domain and a C-terminal transmembrane KASH [Klarsicht-ANC-Syne-homology] domain and display N-terminal actin-binding CH (calponin homology) domains. Mutations in these proteins have been described in Emery-Dreifuss muscular dystrophy and attributed to disruptions of interactions at the NE with nesprins binding partners, lamin A/C and emerin. Evolutionary analysis of the rod domains of the nesprins has shown that they are almost entirely composed of unbroken SR-like structures. We present a bioinformatical approach to accurate definition of the boundaries of each SR by comparison with canonical SR structures, allowing for a large-scale homology modelling of the 74 nesprin-1 and 56 nesprin-2 SRs. The exposed and evolutionary conserved residues identify important pbs for protein-protein interactions that can guide tailored binding experiments. Most importantly, the bioinformatics analyses and the 3D models have been central to the design of selected constructs for protein expression. 1D NMR and CD spectra have been performed of the expressed SRs, showing a folded, stable, high content α-helical structure, typical of SRs. Molecular Dynamics simulations have been performed to study the structural and elastic properties of consecutive SRs, revealing insights in the mechanical properties adopted by these modules in the cell.


Asunto(s)
Proteínas de Microfilamentos/química , Simulación de Dinámica Molecular , Proteínas del Tejido Nervioso/química , Proteínas Nucleares/química , Secuencia de Aminoácidos , Secuencia de Consenso , Proteínas del Citoesqueleto , Evolución Molecular , Humanos , Datos de Secuencia Molecular , Análisis de Componente Principal , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Secuencias Repetitivas de Aminoácido , Análisis de Secuencia de Proteína , Espectrina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA