Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mutat ; 41(1): 196-202, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31498527

RESUMEN

Idiopathic intestinal varicosis is a developmental disorder defined by dilated and convoluted submucosal veins in the colon or small bowel. A limited number of families with idiopathic intestinal varices has been reported, but the genetic cause has not yet been identified. We performed whole-exome and targeted Sanger sequencing of candidate genes in five intestinal varicosis families. In four families, mutations in the RPSA gene were found, a gene previously linked to congenital asplenia. Individuals in these pedigrees had intestinal varicose veins and angiodysplasia, often in combination with asplenia. In a further four-generation pedigree that only showed intestinal varicosities, the RPSA gene was normal. Instead, a nonsense mutation in the homeobox gene NKX2-3 was detected which cosegregated with the disease in this large family with a LOD (logarithm of the odds) score of 3.3. NKX2-3 is a component of a molecular pathway underlying spleen and gut vasculature development in mice. Our results provide a molecular basis for familial idiopathic intestinal varices. We provide evidence for a relationship between the molecular pathways underlying the development of the spleen and intestinal mucosal vasculature that is conserved between humans and mice. We propose that clinical management of intestinal varices, should include assessment of a functional spleen.


Asunto(s)
Vasos Sanguíneos/anomalías , Proteínas de Homeodominio/genética , Intestinos/irrigación sanguínea , Mutación , Organogénesis/genética , Receptores de Laminina/genética , Proteínas Ribosómicas/genética , Bazo/irrigación sanguínea , Factores de Transcripción/genética , Vasos Sanguíneos/metabolismo , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Masculino , Linaje , Análisis de Secuencia de ADN , Secuenciación del Exoma
2.
J Pediatr Gastroenterol Nutr ; 70(6): 833-840, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32443043

RESUMEN

OBJECTIVES: The current classification of inflammatory bowel disease (IBD) is based on clinical phenotypes, which is blind to the molecular basis of the disease. The aim of this study was to stratify a treatment-naïve paediatric IBD cohort through specific innate immunity pathway profiling and application of unsupervised machine learning (UML). METHODS: In order to test the molecular integrity of biological pathways implicated in IBD, innate immune responses were assessed at diagnosis in 22 paediatric patients and 10 age-matched controls. Peripheral blood mononuclear cells (PBMCs) were selectively stimulated for assessing the functionality of upstream activation receptors including NOD2, toll-like receptor (TLR) 1-2 and TLR4, and the downstream cytokine responses (IL-10, IL-1ß, IL-6, and TNF-α) using multiplex assays. Cytokine data generated were subjected to hierarchical clustering to assess for patient stratification. RESULTS: Combined immune responses in patients across 12 effector responses were significantly reduced compared with controls (P = 0.003) and driven primarily by "hypofunctional" TLR responses (P values 0.045, 0.010, and 0.018 for TLR4-mediated IL-10, IL-1ß, and TNF-α, respectively; 0.018 and 0.015 for TLR1-2 -mediated IL-10 and IL-1ß). Hierarchical clustering generated 3 distinct clusters of patients and a fourth group of "unclustered" individuals. No relationship was observed between the observed immune clusters and the clinical disease phenotype. CONCLUSIONS: Although a clinically useful outcome was not observed through hierarchical clustering, our study provides a rationale for using an UML approach to stratify patients. The study also highlights the predominance of hypo-inflammatory innate immune responses as a key mechanism in the pathogenesis of IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Leucocitos Mononucleares , Células Cultivadas , Niño , Citocinas , Humanos , Enfermedades Inflamatorias del Intestino/diagnóstico , Aprendizaje Automático no Supervisado
3.
J Allergy Clin Immunol ; 141(6): 2182-2195.e6, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28870466

RESUMEN

BACKGROUND: Bacterial respiratory tract infections and exacerbations of chronic lung diseases are commonly caused by nontypeable Haemophilus influenzae (NTHi). Cell-mediated cytotoxicity might be key to controlling infection, but the responses of NTHi-specific T-cell populations are not well understood. Mucosal-associated invariant T (MAIT) cells are a recently discovered, innate-like subset of T cells with cytotoxic function, the role of which in lung immunity is unclear. OBJECTIVE: The aim of this study was to determine the mechanisms behind conventional T-cell and MAIT cell cytotoxic responses to NTHi. METHODS: Human ex vivo lung explants were infected with a clinical strain of NTHi. Monocyte-derived macrophages were also infected with NTHi in vitro and cocultured with autologous T cells. Cytotoxic responses of T-cell subsets were measured by using flow cytometry. RESULTS: We found significant upregulation of the cytotoxic markers CD107a and granzyme B in lung CD4+, CD8+, and MAIT cell populations. We show that MAIT cell cytotoxic responses were upregulated by a combination of both time-dependent antigen presentation and a novel mechanism through which IL-12 and IL-7 synergistically control granzyme B through upregulation of the IL-12 receptor. CONCLUSIONS: Overall, our data provide evidence for a cytotoxic role of MAIT cells in the lung and highlight important differences in the control of adaptive and innate-like T-cell responses. Understanding these mechanisms might lead to new therapeutic opportunities to modulate the antibacterial response and improve clinical outcome.


Asunto(s)
Infecciones por Haemophilus/inmunología , Interleucina-12/inmunología , Interleucina-7/inmunología , Células T Invariantes Asociadas a Mucosa/inmunología , Mucosa Respiratoria/inmunología , Haemophilus influenzae , Humanos , Inmunidad Mucosa/inmunología
4.
J Allergy Clin Immunol ; 139(2): 597-606.e4, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27555459

RESUMEN

BACKGROUND: Activated phosphoinositide 3-kinase δ syndrome (APDS) is a recently described combined immunodeficiency resulting from gain-of-function mutations in PIK3CD, the gene encoding the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ). OBJECTIVE: We sought to review the clinical, immunologic, histopathologic, and radiologic features of APDS in a large genetically defined international cohort. METHODS: We applied a clinical questionnaire and performed review of medical notes, radiology, histopathology, and laboratory investigations of 53 patients with APDS. RESULTS: Recurrent sinopulmonary infections (98%) and nonneoplastic lymphoproliferation (75%) were common, often from childhood. Other significant complications included herpesvirus infections (49%), autoinflammatory disease (34%), and lymphoma (13%). Unexpectedly, neurodevelopmental delay occurred in 19% of the cohort, suggesting a role for PI3Kδ in the central nervous system; consistent with this, PI3Kδ is broadly expressed in the developing murine central nervous system. Thoracic imaging revealed high rates of mosaic attenuation (90%) and bronchiectasis (60%). Increased IgM levels (78%), IgG deficiency (43%), and CD4 lymphopenia (84%) were significant immunologic features. No immunologic marker reliably predicted clinical severity, which ranged from asymptomatic to death in early childhood. The majority of patients received immunoglobulin replacement and antibiotic prophylaxis, and 5 patients underwent hematopoietic stem cell transplantation. Five patients died from complications of APDS. CONCLUSION: APDS is a combined immunodeficiency with multiple clinical manifestations, many with incomplete penetrance and others with variable expressivity. The severity of complications in some patients supports consideration of hematopoietic stem cell transplantation for severe childhood disease. Clinical trials of selective PI3Kδ inhibitors offer new prospects for APDS treatment.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/genética , Síndromes de Inmunodeficiencia/genética , Trastornos Linfoproliferativos/genética , Mutación/genética , Infecciones del Sistema Respiratorio/genética , Adolescente , Adulto , Animales , Profilaxis Antibiótica , Niño , Preescolar , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Estudios de Cohortes , Inhibidores Enzimáticos/uso terapéutico , Femenino , Trasplante de Células Madre Hematopoyéticas , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/mortalidad , Infecciones por Herpesviridae/terapia , Humanos , Inmunoglobulinas Intravenosas/uso terapéutico , Síndromes de Inmunodeficiencia/mortalidad , Síndromes de Inmunodeficiencia/terapia , Lactante , Cooperación Internacional , Trastornos Linfoproliferativos/mortalidad , Trastornos Linfoproliferativos/terapia , Masculino , Ratones , Persona de Mediana Edad , Recurrencia , Infecciones del Sistema Respiratorio/mortalidad , Infecciones del Sistema Respiratorio/terapia , Encuestas y Cuestionarios , Análisis de Supervivencia , Adulto Joven
5.
Blood ; 125(1): 102-10, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25395427

RESUMEN

The anti-CD28 superagonist antibody TGN1412 caused life-threatening cytokine release syndrome (CRS) in healthy volunteers, which had not been predicted by preclinical testing. T cells in fresh peripheral blood mononuclear cells (PBMCs) do not respond to soluble TGN1412 but do respond following high-density (HD) preculture. We show for the first time that this response is dependent on crystallizable fragment gamma receptor IIb (FcγRIIb) expression on monocytes. This was unexpected because, unlike B cells, circulating monocytes express little or no FcγRIIb. However, FcγRIIb expression is logarithmically increased on monocytes during HD preculture, and this upregulation is necessary and sufficient to explain TGN1412 potency after HD preculture. B-cell FcγRIIb expression is unchanged by HD preculture, but B cells can support TGN1412-mediated T-cell proliferation when added at a frequency higher than that in PBMCs. Although low-density (LD) precultured PBMCs do not respond to TGN1412, T cells from LD preculture are fully responsive when cocultured with FcγRIIb-expressing monocytes from HD preculture, which shows that they are fully able to respond to TGN1412-mediated activation. Our novel findings demonstrate that cross-linking by FcγRIIb is critical for the superagonist activity of TGN1412 after HD preculture, and this may contribute to CRS in humans because of the close association of FcγRIIb-bearing cells with T cells in lymphoid tissues.


Asunto(s)
Anticuerpos Monoclonales Humanizados/química , Monocitos/citología , Receptores de IgG/metabolismo , Regulación hacia Arriba , Animales , Linfocitos B/citología , Antígenos CD28/metabolismo , Células CHO , Proliferación Celular , Técnicas de Cocultivo , Cricetinae , Cricetulus , Citocinas/metabolismo , Humanos , Leucocitos Mononucleares/citología , Linfocitos T/citología , Linfocitos T/inmunología , Transfección
6.
Am J Respir Crit Care Med ; 194(10): 1208-1218, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27115408

RESUMEN

RATIONALE: Mucosal-associated invariant T (MAIT) cells are a recently described abundant, proinflammatory T-cell subset with unknown roles in pulmonary immunity. Nontypeable Haemophilus influenzae (NTHi) is the leading bacterial pathogen during chronic obstructive pulmonary disease (COPD) exacerbations and is a plausible target for MAIT cells. OBJECTIVES: To investigate whether MAIT cells respond to NTHi and the effects of inhaled corticosteroids (ICS) on their frequency and function in COPD. METHODS: Eleven subjects with COPD receiving ICS, 8 steroid-naive subjects with COPD, and 21 healthy control subjects underwent phlebotomy, sputum induction, bronchoalveolar lavage, and endobronchial biopsy. Pulmonary and monocyte-derived macrophages were cultured in vitro with NTHi. MEASUREMENTS AND MAIN RESULTS: Frequencies of Vα7.2+CD161+ MAIT cells, surface expression of the major histocompatibility complex-related protein 1 (MR1), and intracellular IFN-γ expression were measured by flow cytometry. MAIT-cell frequencies were reduced in peripheral blood of ICS-treated subjects with COPD (median 0.38%; interquartile range [IQR], 0.25-0.96) compared with healthy control subjects (1.8%; IQR, 1.4-2.5; P = 0.001) or steroid-naive patients with COPD (1.8%; IQR, 1.2-2.3; P = 0.04). MAIT cells were reduced in bronchial biopsies from subjects with COPD treated with steroids (0.73%; IQR, 0.46-1.3) compared with healthy control subjects (4.0%; IQR, 1.6-5.0; P = 0.02). Coculture of live NTHi increased macrophage surface expression of MR1 and induced IFN-γ from CD4 cells and CD8 cells, but most potently from MAIT cells (median IFN-γ-positive frequencies, 2.9, 8.6, and 27.6%, respectively). In vitro fluticasone and budesonide reduced MR1 surface expression twofold and decreased NTHi-induced IFN-γ secretion eightfold. CONCLUSIONS: MAIT cells are deficient in blood and bronchial tissue in steroid-treated, but not steroid-naive, COPD. NTHi constitutes a target for pulmonary MAIT-cell immune responses, which are significantly impaired by corticosteroids.


Asunto(s)
Corticoesteroides/farmacología , Infecciones por Haemophilus/inmunología , Haemophilus influenzae/inmunología , Células T Invariantes Asociadas a Mucosa/efectos de los fármacos , Células T Invariantes Asociadas a Mucosa/inmunología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Adulto , Anciano , Femenino , Citometría de Flujo , Infecciones por Haemophilus/complicaciones , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Adulto Joven
8.
J Allergy Clin Immunol ; 133(5): 1420-8, 1428.e1, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24582167

RESUMEN

BACKGROUND: Common variable immunodeficiency (CVID) is the commonest symptomatic primary antibody disorder, with monogenic causes identified in less than 10% of all cases. X-linked proliferative disease is a monogenic disorder that is associated with hypogammaglobulinemia and characterized by a deficiency of invariant NKT (iNKT) cells. We sought to evaluate whether a defect in iNKT cell number or function was associated with CVID. OBJECTIVE: An evaluation of the function and number of iNKT cells in CVID. METHODS: Six-color flow cytometry enumerated iNKT cells in 36 patients with CVID and 50 healthy controls. Their proliferative capacity and cytokine production (IFN-γ, IL-13, IL-17) was then investigated following activation with CD1d ligand alpha-galactosylceramide. RESULTS: A reduction in the number of iNKT cells (31 iNKT cells/10(5) T cells) in patients with CVID compared with healthy controls (100 iNKT cells/10(5) T cells) was observed (P < .0001). Two cohorts could be discerned within the CVID group: group 1 with an abnormal number of iNKT cells (n = 28) and group 2 with a normal number of iNKT cells (n = 8). This segregation coassociated with the proliferative capacity of iNKT cells between the 2 groups. However, differences in the function of iNKT cells were noted in group 2, in which an increase in IFN-γ (P = .0016) and a decrease in IL-17 (P = .0002) production was observed between patients with CVID and controls. Finally, a significant association was seen between the number of iNKT cells and the percentage of class-switched memory B cells and propensity to lymphoproliferation (P = .002) in patients with CVID. CONCLUSION: iNKT cells are deficient and/or functionally impaired in most of the patients with CVID.


Asunto(s)
Inmunodeficiencia Variable Común/inmunología , Células T Asesinas Naturales/inmunología , Adulto , Células Cultivadas , Inmunodeficiencia Variable Común/genética , Inmunodeficiencia Variable Común/patología , Citocinas/genética , Citocinas/inmunología , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/inmunología , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Humanos , Masculino , Células T Asesinas Naturales/patología
9.
J Biol Chem ; 288(45): 32797-32808, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24078633

RESUMEN

MHC class I molecules display peptides at the cell surface to cytotoxic T cells. The co-factor tapasin functions to ensure that MHC I becomes loaded with high affinity peptides. In most mammals, the tapasin gene appears to have little sequence diversity and few alleles and is located distal to several classical MHC I loci, so tapasin appears to function in a universal way to assist MHC I peptide loading. In contrast, the chicken tapasin gene is tightly linked to the single dominantly expressed MHC I locus and is highly polymorphic and moderately diverse in sequence. Therefore, tapasin-assisted loading of MHC I in chickens may occur in a haplotype-specific way, via the co-evolution of chicken tapasin and MHC I. Here we demonstrate a mechanistic basis for this co-evolution, revealing differences in the ability of two chicken MHC I alleles to bind and release peptides in the presence or absence of tapasin, where, as in mammals, efficient self-loading is negatively correlated with tapasin-assisted loading. We found that a polymorphic residue in the MHC I α3 domain thought to bind tapasin influenced both tapasin function and intrinsic peptide binding properties. Differences were also evident between the MHC alleles in their interactions with tapasin. Last, we show that a mismatched combination of tapasin and MHC alleles exhibit significantly impaired MHC I maturation in vivo and that polymorphic MHC residues thought to contact tapasin influence maturation efficiency. Collectively, this supports the possibility that tapasin and BF2 proteins have co-evolved, resulting in allele-specific peptide loading in vivo.


Asunto(s)
Alelos , Evolución Molecular , Sitios Genéticos/fisiología , Antígenos de Histocompatibilidad Clase I/genética , Proteínas de Transporte de Membrana/genética , Animales , Pollos , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Proteínas de Transporte de Membrana/inmunología , Estructura Terciaria de Proteína
11.
Trials ; 25(1): 31, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195501

RESUMEN

BACKGROUND: The spleen plays a significant role in the clearance of circulating microorganisms. Sequelae of splenectomy, especially immunodeficiency, can have a deleterious effect on a patient's health and even lead to death. Hence, splenectomy should be avoided and spleen preservation during elective surgery has become a treatment goal. However, this cannot be achieved in every patient due to intraoperative technical difficulties or oncological reasons. Autogenic splenic implantation (ASI) is currently the only possible way to preserve splenic function when a splenectomy is necessary. Experience largely stems from trauma patients with a splenic rupture. Splenic immune function can be measured by the body's clearing capacity of encapsulated bacteria. The aim of this study is to assess the splenic immune function after ASI was performed during minimally invasive (laparoscopic or robotic) distal pancreatectomy with splenectomy. METHODS: This is the protocol for a multicentre, randomized, open-labelled trial. Thirty participants with benign or low-grade malignant lesions of the distal pancreas requiring minimally invasive distal pancreatectomy and splenectomy will be allocated to either additional intraoperative ASI (intervention) or no further intervention (control). An additional 15 patients who will undergo spleen-preserving distal pancreatectomy serve as the control group with normal splenic function. Six months postoperatively, after assumed restoration of splenic function, patients will be given a Salmonella typhi (Typhim Vi™) vaccine. The Salmonella typhi vaccine is a polysaccharide vaccine. The specific antibody titres immediately before and 4 to 6 weeks after vaccination will be measured. The ratio between pre- and post-vaccination antibody count is the primary outcome measure and secondary outcome measures include intraoperative details, length of hospital stay, 30-day mortality and morbidity. DISCUSSION: This study will investigate the splenic immune function of patients who undergo ASI during minimally invasive distal pancreatectomy with splenectomy. The splenic immune function will be measured using the surrogate outcome of specific antibody titre after vaccination with a Salmonella typhi vaccine. The results will reveal details about splenic function after ASI and guide further treatment options for patients when a splenectomy cannot be avoided. It might eventually lead to a new standard of care making sometimes more demanding and time-consuming spleen-preserving procedures redundant. TRIAL REGISTRATION: International Standard Randomized Controlled Trials Number (ISRCTN) ISRCTN10171587. Prospectively registered on 18 February 2019.


Asunto(s)
Pancreatectomía , Esplenectomía , Vacunas , Humanos , Estudios Multicéntricos como Asunto , Páncreas , Ensayos Clínicos Controlados Aleatorios como Asunto , Bazo/cirugía
12.
Immunology ; 136(2): 163-75, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22260486

RESUMEN

Cross-presentation is the presentation by MHC class I of antigenic peptides from exogenous proteins that have been internalized and processed by professional antigen-presenting cells, e.g. dendritic cells. We have investigated the influence of particle size and antigen load on cross-presentation following antigen delivery on microspheres (MS). Cross-presentation from small particles (0·8-µm) is sensitive to proteasome inhibition and the blockade of endoplasmic reticulum-resident MHC class I complex export, whereas cross-presentation from larger particles (aggregated clumps of 0·8-µm MS) is resistant to these antagonists. This observation may have been overlooked previously, because of the heterogeneity of particle size and MS uptake in unsorted dendritic cell populations. Larger particles carry more antigen, but we show that antigen load does not influence the cross-presentation pathway used. Whereas early endosome autoantigen 1 (EEA1) could be observed in all phagosomes, we observed endoplasmic reticulum SNARE of molecular weight 24 000 (ERS24) and cathepsin S in association with 3·0-µm and aggregated 0·8-µm MS, but not individual 0·8-µm MS. A potential mechanism underlying our observations may be the activation of ß-catenin by disruption of E-cadherin-mediated adhesion. Activated ß-catenin was detected in the cytoplasm of cells after phagocytosis of MS (highest levels for the largest particles). We propose that particle size can direct the use of different pathways for the cross-presentation of an identical antigen. Furthermore, these pathways have differing yields of MHC class I-peptide complexes, which is an important variable in designing vaccination strategies for maximal antigen expression and CD8(+) T-cell priming.


Asunto(s)
Reactividad Cruzada/inmunología , Tamaño de la Partícula , Fagocitosis/inmunología , Animales , Catepsinas/inmunología , Línea Celular , Ratones , Microesferas , Fagosomas/inmunología , Proteínas R-SNARE/inmunología , Proteínas de Transporte Vesicular/inmunología , beta Catenina/inmunología
14.
J Immunol ; 184(1): 73-83, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19949070

RESUMEN

Tapasin edits the peptide repertoire presented to CD8(+) T cells by favoring loading of slow off-rate peptides on MHC I molecules. To investigate the role of tapasin on T cell immunodominance we used poxvirus viral vectors expressing a polytope of lymphocytic choriomeningitis virus epitopes with different off-rates. In tapasin-deficient mice, responses to subdominant fast off-rate peptides were clearly favored. This alteration of the CD8(+) T cell hierarchy was a consequence of tapasin editing and not a consequence of the alteration of the T cell repertoire in tapasin-deficient mice, because bone marrow chimeric mice (wild-type recipients reconstituted with tapasin knockout bone marrow) showed the same hierarchy as the tapasin knockout mice. Tapasin editing is therefore a contributing factor to the phenomenon of immunodominance. Although tapasin knockout cells have low MHC I surface expression, Ag presentation was efficient and resulted in strong T cell responses involving T cells with increased functional avidity. Therefore, in this model, tapasin-deficient mice do not have a reduced but rather have an altered immune response.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Epítopos Inmunodominantes/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Proteínas de Transporte de Membrana/inmunología , Animales , Presentación de Antígeno/inmunología , Cromatografía Líquida de Alta Presión , Antígenos de Histocompatibilidad Clase I/inmunología , Activación de Linfocitos/inmunología , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Noqueados
16.
Inflamm Bowel Dis ; 28(6): 912-922, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34978330

RESUMEN

BACKGROUND: Inflammatory bowel disease may arise with inadequate immune response to intestinal bacteria. NOD2 is an established gene in Crohn's disease pathogenesis, with deleterious variation associated with reduced NFKB signaling. We hypothesized that deleterious variation across the NOD2 signaling pathway impacts on transcription. METHODS: Treatment-naïve pediatric inflammatory bowel disease patients had ileal biopsies for targeted autoimmune RNA-sequencing and blood for whole exome sequencing collected at diagnostic endoscopy. Utilizing GenePy, a per-individual, per-gene score, genes within the NOD signaling pathway were assigned a quantitative score representing total variant burden. Where multiple genes formed complexes, GenePy scores were summed to create a "complex" score. Normalized transcript expression of 95 genes within this pathway was retrieved. Regression analysis was performed to determine the impact of genomic variation on gene transcription. RESULTS: Thirty-nine patients were included. Limited clustering of patients based on NOD signaling transcripts was related to underlying genomic variation. Patients harboring deleterious variation in NOD2 had reduced NOD2 (ß = -0.702, P = 4.3 × 10-5) and increased NFKBIA (ß = 0.486, P = .001), reflecting reduced NFKB signal activation. Deleterious variation in the NOD2-RIPK2 complex was associated with increased NLRP3 (ß = 0.8, P = 3.1475 × 10-8) and TXN (ß = -0.417, P = 8.4 × 10-5) transcription, components of the NLRP3 inflammasome. Deleterious variation in the TAK1-TAB complex resulted in reduced MAPK14 transcription (ß = -0.677, P = 1.7 × 10-5), a key signal transduction protein in the NOD2 signaling cascade and increased IFNA1 (ß = 0.479, P = .001), indicating reduced transcription of NFKB activators and alternative interferon transcription in these patients. CONCLUSIONS: Data integration identified perturbation of NOD2 signaling transcription correlated with genomic variation. A hypoimmune NFKB signaling transcription response was observed. Alternative inflammatory pathways were activated and may represent therapeutic targets in specific patients.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Proteína Adaptadora de Señalización NOD2 , Niño , Variación Genética , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína Adaptadora de Señalización NOD2/genética , Proteína Adaptadora de Señalización NOD2/metabolismo , Transducción de Señal/genética , Regulación hacia Arriba
17.
Front Immunol ; 13: 853265, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663963

RESUMEN

The worldwide COVID-19 pandemic has claimed millions of lives and has had a profound effect on global life. Understanding the body's immune response to SARS-CoV-2 infection is crucial in improving patient management and prognosis. In this study we compared influenza and SARS-CoV-2 infected patient cohorts to identify distinct blood transcript abundances and cellular composition to better understand the natural immune response associated with COVID-19, compared to another viral infection being influenza, and identify a prognostic signature of COVID-19 patient outcome. Clinical characteristics and peripheral blood were acquired upon hospital admission from two well characterised cohorts, a cohort of 88 patients infected with influenza and a cohort of 80 patients infected with SARS-CoV-2 during the first wave of the pandemic and prior to availability of COVID-19 treatments and vaccines. Gene transcript abundances, enriched pathways and cellular composition were compared between cohorts using RNA-seq. A genetic signature between COVID-19 survivors and non-survivors was assessed as a prognostic predictor of COVID-19 outcome. Contrasting immune responses were detected with an innate response elevated in influenza and an adaptive response elevated in COVID-19. Additionally ribosomal, mitochondrial oxidative stress and interferon signalling pathways differentiated the cohorts. An adaptive immune response was associated with COVID-19 survival, while an inflammatory response predicted death. A prognostic transcript signature, associated with circulating immunoglobulins, nucleosome assembly, cytokine production and T cell activation, was able to stratify COVID-19 patients likely to survive or die. This study provides a unique insight into the immune responses of treatment naïve patients with influenza or COVID-19. The comparison of immune response between COVID-19 survivors and non-survivors enables prognostication of COVID-19 patients and may suggest potential therapeutic strategies to improve survival.


Asunto(s)
COVID-19 , Vacunas contra la Influenza , Gripe Humana , Inmunidad Adaptativa , Humanos , Pandemias , SARS-CoV-2
18.
Front Immunol ; 13: 988685, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36203591

RESUMEN

Background: The COVID-19 pandemic has created pressure on healthcare systems worldwide. Tools that can stratify individuals according to prognosis could allow for more efficient allocation of healthcare resources and thus improved patient outcomes. It is currently unclear if blood gene expression signatures derived from patients at the point of admission to hospital could provide useful prognostic information. Methods: Gene expression of whole blood obtained at the point of admission from a cohort of 78 patients hospitalised with COVID-19 during the first wave was measured by high resolution RNA sequencing. Gene signatures predictive of admission to Intensive Care Unit were identified and tested using machine learning and topological data analysis, TopMD. Results: The best gene expression signature predictive of ICU admission was defined using topological data analysis with an accuracy: 0.72 and ROC AUC: 0.76. The gene signature was primarily based on differentially activated pathways controlling epidermal growth factor receptor (EGFR) presentation, Peroxisome proliferator-activated receptor alpha (PPAR-α) signalling and Transforming growth factor beta (TGF-ß) signalling. Conclusions: Gene expression signatures from blood taken at the point of admission to hospital predicted ICU admission of treatment naïve patients with COVID-19.


Asunto(s)
COVID-19 , COVID-19/genética , Receptores ErbB , Expresión Génica , Humanos , Unidades de Cuidados Intensivos , PPAR alfa , Pandemias , Factor de Crecimiento Transformador beta
19.
Sci Immunol ; 7(74): eabn3800, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35960817

RESUMEN

Tumor necrosis factor receptor-associated factor 3 (TRAF3) is a central regulator of immunity. TRAF3 is often somatically mutated in B cell malignancies, but its role in human immunity is not defined. Here, in five unrelated families, we describe an immune dysregulation syndrome of recurrent bacterial infections, autoimmunity, systemic inflammation, B cell lymphoproliferation, and hypergammaglobulinemia. Affected individuals each had monoallelic mutations in TRAF3 that reduced TRAF3 expression. Immunophenotyping showed that patients' B cells were dysregulated, exhibiting increased nuclear factor-κB 2 activation, elevated mitochondrial respiration, and heightened inflammatory responses. Patients had mild CD4+ T cell lymphopenia, with a reduced proportion of naïve T cells but increased regulatory T cells and circulating T follicular helper cells. Guided by this clinical phenotype, targeted analyses demonstrated that common genetic variants, which also reduce TRAF3 expression, are associated with an increased risk of B cell malignancies, systemic lupus erythematosus, higher immunoglobulin levels, and bacterial infections in the wider population. Reduced TRAF3 conveys disease risks by driving B cell hyperactivity via intrinsic activation of multiple intracellular proinflammatory pathways and increased mitochondrial respiration, with a likely contribution from dysregulated T cell help. Thus, we define monogenic TRAF3 haploinsufficiency syndrome and demonstrate how common TRAF3 variants affect a range of human diseases.


Asunto(s)
Neoplasias , Factor 3 Asociado a Receptor de TNF , Autoinmunidad/genética , Linfocitos B , Humanos , Mutación , Neoplasias/patología , Factor 3 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA