Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biol Cybern ; 113(1-2): 149-159, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30377766

RESUMEN

This paper presents an optimal control approach to modeling effects of cardiovascular regulation during head-up tilt (HUT). Many patients who suffer from dizziness or light-headedness are administered a head-up tilt test to explore potential deficits within the autonomic control system, which maintains the cardiovascular system at homeostasis. This system is complex and difficult to study in vivo, and thus we propose to use mathematical modeling to achieve a better understanding of cardiovascular regulation during HUT. In particular, we show the feasibility of using optimal control theory to compute physiological control variables, vascular resistance and cardiac contractility, quantities that cannot be measured directly, but which are useful to assess the state of the cardiovascular system. A non-pulsatile lumped parameter model together with pseudo- and clinical data are utilized in the optimal control problem formulation. Results show that the optimal control approach can predict time-varying quantities regulated by the cardiovascular control system. Our results compare favorable to our previous study using a piecewise linear spline approach, less a priori knowledge is needed, and results were obtained at a significantly lower computational cost.


Asunto(s)
Presión Sanguínea/fisiología , Modelos Cardiovasculares , Dinámicas no Lineales , Postura/fisiología , Pruebas de Mesa Inclinada , Gasto Cardíaco/fisiología , Frecuencia Cardíaca/fisiología , Humanos , Extremidad Inferior/fisiología , Resistencia Vascular
2.
J Math Biol ; 79(3): 987-1014, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31152210

RESUMEN

This study develops non-pulsatile and pulsatile models for the prediction of blood flow and pressure during head-up tilt. This test is used to diagnose potential pathologies within the autonomic control system, which acts to keep the cardiovascular system at homeostasis. We show that mathematical modeling can be used to predict changes in cardiac contractility, vascular resistance, and arterial compliance, quantities that cannot be measured but are useful to assess the system's state. These quantities are predicted as time-varying parameters modeled using piecewise linear splines. Having models with various levels of complexity formulated with a common set of parameters, allows us to combine long-term non-pulsatile simulations with pulsatile simulations on a shorter time-scale. We illustrate results for a representative subject tilted head-up from a supine position to a [Formula: see text] angle. The tilt is maintained for 5 min before the subject is tilted back down. Results show that if volume data is available for all vascular compartments three parameters can be identified, cardiovascular resistance, vascular compliance, and ventricular contractility, whereas if model predictions are made against arterial pressure and cardiac output data alone, only two parameters can be estimated either resistance and contractility or resistance and compliance.


Asunto(s)
Presión Sanguínea , Gasto Cardíaco/fisiología , Hemodinámica , Modelos Cardiovasculares , Flujo Pulsátil , Posición Supina , Resistencia Vascular/fisiología , Adulto , Frecuencia Cardíaca , Humanos , Masculino , Pruebas de Mesa Inclinada
3.
Math Med Biol ; 31(4): 365-92, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23959910

RESUMEN

Short-term cardiovascular responses to head-up tilt (HUT) involve complex cardiovascular regulation in order to maintain blood pressure at homoeostatic levels. This manuscript presents a patient-specific model that uses heart rate as an input to fit the dynamic changes in arterial blood pressure data during HUT. The model contains five compartments representing arteries and veins in the upper and lower body of the systemic circulation, as well as the left ventricle facilitating pumping of the heart. A physiologically based submodel describes gravitational pooling of the blood into the lower extremities during HUT, and a cardiovascular regulation model adjusts cardiac contractility and vascular resistance to the blood pressure changes. Nominal parameter values are computed from patient-specific data and literature estimates. The model is rendered patient specific via the use of parameter estimation techniques. This process involves sensitivity analysis, prediction of a subset of identifiable parameters, and non-linear optimization. The approach proposed here was applied to the analysis of aortic and carotid HUT data from five healthy young subjects. Results showed that it is possible to identify a subset of model parameters that can be estimated allowing the model to fit changes in arterial blood pressure observed at the level of the carotid bifurcation. Moreover, the model estimates physiologically reasonable values for arterial and venous blood pressures, blood volumes and cardiac output for which data are not available.


Asunto(s)
Presión Sanguínea/fisiología , Modelos Cardiovasculares , Postura/fisiología , Pruebas de Mesa Inclinada , Adulto , Volumen Sanguíneo/fisiología , Gasto Cardíaco/fisiología , Frecuencia Cardíaca/fisiología , Homeostasis/fisiología , Humanos , Masculino , Conceptos Matemáticos , Contracción Miocárdica/fisiología , Posición Supina/fisiología , Resistencia Vascular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA