Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Nat Immunol ; 14(9): 908-16, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23872678

RESUMEN

Human T cells that express a T cell antigen receptor (TCR) containing γ-chain variable region 9 and δ-chain variable region 2 (Vγ9Vδ2) recognize phosphorylated prenyl metabolites as antigens in the presence of antigen-presenting cells but independently of major histocompatibility complex (MHC), the MHC class I-related molecule MR1 and antigen-presenting CD1 molecules. Here we used genetic approaches to identify the molecule that binds and presents phosphorylated antigens. We found that the butyrophilin BTN3A1 bound phosphorylated antigens with low affinity, at a stoichiometry of 1:1, and stimulated mouse T cells with transgenic expression of a human Vγ9Vδ2 TCR. The structures of the BTN3A1 distal domain in complex with host- or microbe-derived phosphorylated antigens had an immunoglobulin-like fold in which the antigens bound in a shallow pocket. Soluble Vγ9Vδ2 TCR interacted specifically with BTN3A1-antigen complexes. Accordingly, BTN3A1 represents an antigen-presenting molecule required for the activation of Vγ9Vδ2 T cells.


Asunto(s)
Antígenos CD/metabolismo , Antígenos/inmunología , Antígenos/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Animales , Presentación de Antígeno/genética , Presentación de Antígeno/inmunología , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Antígenos CD/química , Antígenos CD/genética , Butirofilinas , Cromosomas Humanos Par 6 , Humanos , Ratones , Ratones Transgénicos , Modelos Moleculares , Organofosfatos/química , Organofosfatos/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología
2.
Ecol Lett ; 27(8): e14492, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39136137

RESUMEN

A rapidly warming climate is driving changes in biodiversity worldwide, and its impact on insect communities is critical given their outsized role in ecosystem function and services. We use a long-term dataset of North American bumble bee species occurrences to determine whether the community temperature index (CTI), a measure of the balance of warm- and cool-adapted species in a community, has increased given warming temperatures. CTI has increased by an average of 0.99°C in strong association with warming maximum summer temperatures over the last 30 years with the areas exhibiting the largest increases including mid- to high latitudes as well as low and high elevations-areas relatively shielded from other intensive global changes. CTI shifts have been driven by the decline of cold-adapted species and increases in warm-adapted species within bumble bee communities. Our results show the pervasive impacts and ecological implications warming temperatures pose to insects.


Asunto(s)
Estaciones del Año , Animales , Abejas/fisiología , América del Norte , Biodiversidad , Temperatura , Calentamiento Global , Cambio Climático
3.
Am Nat ; 204(2): 165-180, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39008838

RESUMEN

AbstractIn recent years, ecological research has become increasingly synthetic, relying on revolutionary changes in data availability and accessibility. In spite of their strengths, these approaches may cause us to overlook natural history knowledge that is not part of the digitized English-language scientific record. Here, we combine historic and modern documents to quantify species-specific nesting habitat associations of bumblebees (Bombus spp. Latreille, 1802 Apidae). We compiled nest location data from 316 documents, of which 81 were non-English and 93 were published before 1950. We tested whether nesting traits show phylogenetic signal, examined relationships between habitat associations at different scales, and compared methodologies used to locate nests. We found no clear phylogenetic signals, but we found that nesting habitat associations were somewhat generalizable within subgenera. Landcover associations were related to nesting substrate associations; for example, surface-nesting species also tended to be associated with grasslands. Methodology was associated with nest locations; community scientists were most likely and researchers using nest boxes were least likely to report nests in human-dominated environments. These patterns were not apparent in past syntheses based only on the modern digital record. Our findings highlight the tremendous value of historic accounts for quantifying species' traits and other basic biological knowledge needed to interpret global-scale patterns.


Asunto(s)
Ecosistema , Comportamiento de Nidificación , Especificidad de la Especie , Animales , Abejas/fisiología , Filogenia
4.
Ecol Appl ; 34(2): e2935, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38071699

RESUMEN

Ongoing declines of bees and other pollinators are driven in part by the loss of critical floral resources and nesting substrates. Most conservation/restoration efforts for bees aim to enhance floral abundance and continuity but often assume the same actions will bolster nesting opportunities. Recent research suggests that habitat plantings may not always provide both forage and nesting resources. We evaluated wildflower plantings designed to augment floral resources to determine their ability to enhance nesting by soil-nesting bees over 3 study years in Northern California agricultural landscapes. We established wildflower plantings along borders of annual row crops and paired each with an unplanted control border. We used soil emergence traps to assess nest densities and species richness of soil-nesting bees from spring through late summer at paired field borders planted with wildflowers or maintained conventionally as bare or sparsely vegetated areas, as is typical for the region. We also quantified soil-surface characteristics and flower resources among borders. Wildflower plantings significantly increased nest densities and the richness of bee species using them. Such benefits occurred within the first year of planting and persisted up to 4 years post establishment. The composition of nesting bee communities also differed between wildflower and unenhanced borders. Wildflower plantings differed from controls in multiple characteristics of the soil surface, including vegetation cover, surface microtopography and hardness. Surprisingly, only vegetation cover significantly affected nest densities and species richness. Wildflower plantings are a widespread habitat action with the potential to support wild bees. The demonstrated benefit wildflower plantings had for increasing the nesting of soil-nesting bees greatly augments their relevance for the conservation of wild bee communities in agricultural and other landscapes. Identifying soil-surface characteristics that are important for nesting provides critical information to guide the implementation and management of habitats for bees.


Asunto(s)
Agricultura , Suelo , Abejas , Animales , Productos Agrícolas , Flores , Estaciones del Año
5.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34810261

RESUMEN

Pesticides are linked to global insect declines, with impacts on biodiversity and essential ecosystem services. In addition to well-documented direct impacts of pesticides at the current stage or time, potential delayed "carryover" effects from past exposure at a different life stage may augment impacts on individuals and populations. We investigated the effects of current exposure and the carryover effects of past insecticide exposure on the individual vital rates and population growth of the solitary bee, Osmia lignaria Bees in flight cages freely foraged on wildflowers, some treated with the common insecticide, imidacloprid, in a fully crossed design over 2 y, with insecticide exposure or no exposure in each year. Insecticide exposure directly to foraging adults and via carryover effects from past exposure reduced reproduction. Repeated exposure across 2 y additively impaired individual performance, leading to a nearly fourfold reduction in bee population growth. Exposure to even a single insecticide application can have persistent effects on vital rates and can reduce population growth for multiple generations. Carryover effects had profound implications for population persistence and must be considered in risk assessment, conservation, and management decisions for pollinators to mitigate the effects of insecticide exposure.


Asunto(s)
Ecosistema , Insecticidas/efectos adversos , Insecticidas/farmacología , Plaguicidas/farmacología , Polinización/efectos de los fármacos , Crecimiento Demográfico , Animales , Abejas , Biodiversidad , Cruzamientos Genéticos , Femenino , Modelos Lineales , Neonicotinoides/farmacología , Nitrocompuestos/farmacología , Probabilidad , Reproducción , Medición de Riesgo
6.
J Anim Ecol ; 92(9): 1802-1814, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37386764

RESUMEN

Human-mediated species introductions provide real-time experiments in how communities respond to interspecific competition. For example, managed honey bees Apis mellifera (L.) have been widely introduced outside their native range and may compete with native bees for pollen and nectar. Indeed, multiple studies suggest that honey bees and native bees overlap in their use of floral resources. However, for resource overlap to negatively impact resource collection by native bees, resource availability must also decline, and few studies investigate impacts of honey bee competition on native bee floral visits and floral resource availability simultaneously. In this study, we investigate impacts of increasing honey bee abundance on native bee visitation patterns, pollen diets, and nectar and pollen resource availability in two Californian landscapes: wildflower plantings in the Central Valley and montane meadows in the Sierra. We collected data on bee visits to flowers, pollen and nectar availability, and pollen carried on bee bodies across multiple sites in the Sierra and Central Valley. We then constructed plant-pollinator visitation networks to assess how increasing honey bee abundance impacted perceived apparent competition (PAC), a measure of niche overlap, and pollinator specialization (d'). We also compared PAC values against null expectations to address whether observed changes in niche overlap were greater or less than what we would expect given the relative abundances of interacting partners. We find clear evidence of exploitative competition in both ecosystems based on the following results: (1) honey bee competition increased niche overlap between honey bees and native bees, (2) increased honey bee abundance led to decreased pollen and nectar availability in flowers, and (3) native bee communities responded to competition by shifting their floral visits, with some becoming more specialized and others becoming more generalized depending on the ecosystem and bee taxon considered. Although native bees can adapt to honey bee competition by shifting their floral visits, the coexistence of honey bees and native bees is tenuous and will depend on floral resource availability. Preserving and augmenting floral resources is therefore essential in mitigating negative impacts of honey bee competition. In two California ecosystems, honey bee competition decreases pollen and nectar resource availability in flowers and alters native bee diets with potential implications for bee conservation and wildlands management.


Asunto(s)
Ecosistema , Néctar de las Plantas , Humanos , Abejas , Animales , Polinización , Flores , Polen
7.
Am J Bot ; 108(11): 2196-2207, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34622948

RESUMEN

PREMISE: Many animals provide ecosystem services in the form of pollination including honeybees, which have become globally dominant floral visitors. A rich literature documents considerable variation in single visit pollination effectiveness, but this literature has yet to be extensively synthesized to address whether honeybees are effective pollinators. METHODS: We conducted a hierarchical meta-analysis of 168 studies and extracted 1564 single visit effectiveness (SVE) measures for 240 plant species. We paired SVE data with visitation frequency data for 69 of these studies. We used these data to ask three questions: (1) Do honeybees (Apis mellifera) and other floral visitors differ in their SVE? (2) To what extent do plant and pollinator attributes predict differences in SVE between honeybees and other visitors? (3) Is there a correlation between visitation frequency and SVE? RESULTS: Honeybees were significantly less effective than the most effective non-honeybee pollinators but were as effective as the average pollinator. The type of pollinator moderated these effects. Honeybees were less effective compared to the most effective and average bird and bee pollinators but were as effective as other taxa. Visitation frequency and SVE were positively correlated, but this trend was largely driven by data from communities where honeybees were absent. CONCLUSIONS: Although high visitation frequencies make honeybees important pollinators, they were less effective than the average bee and rarely the most effective pollinator of the plants they visit. As such, honeybees may be imperfect substitutes for the loss of wild pollinators, and safeguarding pollination will benefit from conservation of non-honeybee taxa.


Asunto(s)
Ecosistema , Polinización , Animales , Abejas , Flores , Plantas
9.
Proc Natl Acad Sci U S A ; 115(39): 9756-9760, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30201716

RESUMEN

Chemosensory signals play a key role in species recognition and mate location in both invertebrate and vertebrate species. Closely related species often produce similar but distinct signals by varying the ratios or components in pheromone blends to avoid interference in their communication channels and minimize cross-attraction among congeners. However, exploitation of reproductive signals by predators and parasites also may provide strong selective pressure on signal phenotypes. For example, bolas spiders mimic the pheromones of several moth species to attract their prey, and parasitic blister beetle larvae, known as triungulins, cooperatively produce an olfactory signal that mimics the sex pheromone of their female host bees to attract male bees, as the first step in being transported by their hosts to their nests. In both cases, there is strong selection pressure on the host to discriminate real mates from aggressive mimics and, conversely, on the predator, parasite, or parasitoid to track and locally adapt to the evolving signals of its hosts. Here we show local adaptation of a beetle, Meloe franciscanus (Coleoptera: Meloidae), to the pheromone chemistry and mate location behavior of its hosts, two species of solitary bees in the genus Habropoda We report that Mfranciscanus' deceptive signal is locally host-adapted in its chemical composition and ratio of components, with host bees from each allopatric population preferring the deceptive signals of their sympatric parasite population. Furthermore, in different locales, the triungulin aggregations have adapted their perching height to the height at which local male bees typically patrol for females.


Asunto(s)
Abejas/parasitología , Escarabajos/fisiología , Interacciones Huésped-Parásitos/fisiología , Atractivos Sexuales/fisiología , Adaptación Fisiológica/fisiología , Animales , Femenino , Larva/fisiología , Masculino
10.
Ecol Lett ; 23(2): 326-335, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31797535

RESUMEN

Supporting ecosystem services and conserving biodiversity may be compatible goals, but there is concern that service-focused interventions mostly benefit a few common species. We use a spatially replicated, multiyear experiment in four agricultural settings to test if enhancing habitat adjacent to crops increases wild bee diversity and abundance on and off crops. We found that enhanced field edges harbored more taxonomically and functionally abundant, diverse, and compositionally different bee communities compared to control edges. Enhancements did not increase the abundance or diversity of bees visiting crops, indicating that the supply of pollination services was unchanged following enhancement. We find that actions to promote crop pollination improve multiple dimensions of biodiversity, underscoring their conservation value, but these benefits may not be spilling over to crops. More work is needed to identify the conditions that promote effective co-management of biodiversity and ecosystem services.


Asunto(s)
Biodiversidad , Ecosistema , Agricultura , Animales , Abejas , Productos Agrícolas , Polinización
11.
Ecol Lett ; 23(10): 1488-1498, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32808477

RESUMEN

Floral plantings are promoted to foster ecological intensification of agriculture through provisioning of ecosystem services. However, a comprehensive assessment of the effectiveness of different floral plantings, their characteristics and consequences for crop yield is lacking. Here we quantified the impacts of flower strips and hedgerows on pest control (18 studies) and pollination services (17 studies) in adjacent crops in North America, Europe and New Zealand. Flower strips, but not hedgerows, enhanced pest control services in adjacent fields by 16% on average. However, effects on crop pollination and yield were more variable. Our synthesis identifies several important drivers of variability in effectiveness of plantings: pollination services declined exponentially with distance from plantings, and perennial and older flower strips with higher flowering plant diversity enhanced pollination more effectively. These findings provide promising pathways to optimise floral plantings to more effectively contribute to ecosystem service delivery and ecological intensification of agriculture in the future.


Asunto(s)
Ecosistema , Polinización , Agricultura , Abejas , Biodiversidad , Europa (Continente) , Flores , Nueva Zelanda , América del Norte , Control de Plagas
12.
Proc Biol Sci ; 287(1935): 20201390, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32993468

RESUMEN

Bees and other beneficial insects experience multiple stressors within agricultural landscapes that act together to impact their health and diminish their ability to deliver the ecosystem services on which human food supplies depend. Disentangling the effects of coupled stressors is a primary challenge for understanding how to promote their populations and ensure robust pollination and other ecosystem services. We used a crossed design to quantify the individual and combined effects of food resource limitation and pesticide exposure on the survival, nesting, and reproduction of the blue orchard bee Osmia lignaria. Nesting females in large flight cages accessed wildflowers at high or low densities, treated with or without the common insecticide, imidacloprid. Pesticides and resource limitation acted additively to dramatically reduce reproduction in free-flying bees. Our results emphasize the importance of considering multiple drivers to inform population persistence, management, and risk assessment for the long-term sustainability of food production and natural ecosystems.


Asunto(s)
Abejas , Insecticidas , Agricultura , Animales , Ecosistema , Femenino , Neonicotinoides , Nitrocompuestos , Plaguicidas , Polinización , Reproducción
13.
J Anim Ecol ; 89(8): 1799-1810, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32358976

RESUMEN

Fire-induced changes in the abundance and distribution of organisms, especially plants, can alter resource landscapes for mobile consumers driving bottom-up effects on their population sizes, morphologies and reproductive potential. We expect these impacts to be most striking for obligate visitors of plants, like bees and other pollinators, but these impacts can be difficult to interpret due to the limited information provided by forager counts in the absence of survival or fitness proxies. Increased bumble bee worker abundance is often coincident with the pulses of flowers that follow recent fire. However, it is unknown if observed postfire activity is due to underlying population growth or a stable pool of colonies recruiting more foragers to abundant resource patches. This distinction is necessary for determining the net impact of disturbance on bumble bees: are there population-wide responses or do just a few colonies reap the rewards? We estimated colony abundance before and after fire in burned and unburned areas using a genetic mark-recapture framework. We paired colony abundance estimates with measures of body size, counts of queens, and estimates of foraging and dispersal to assess changes in worker size, reproductive output, and landscape-scale movements. Higher floral abundance following fire not only increased forager abundance but also the number of colonies from which those foragers came. Importantly, despite a larger population size, we also observed increased mean worker size. Two years following fire, queen abundance was higher in both burned and unburned sites, potentially due to the dispersal of queens from burned into unburned areas. The effects of fire were transient; within two growing seasons, worker abundance was substantially reduced across the entire sampling area and body sizes were similar between burned and unburned sites. Our results reveal how disturbance can temporarily release populations from resource limitation, boosting the genetic diversity, body size, and reproductive output of populations. Given that the effects of fire on bumble bees acted indirectly through pulsed resource availability, it is likely our results are generalizable to other situations, such as habitat restorations, where resource density is enhanced within the landscape.


Asunto(s)
Incendios Forestales , Animales , Abejas , Ecosistema , Flores , Densidad de Población , Reproducción
14.
Oecologia ; 191(2): 377-388, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31486888

RESUMEN

The temporal distribution of resources is an important aspect of habitat quality that can substantially impact population success. Although it is widely accepted that floral resources directly influence wild bee population sizes, we lack experimental data evaluating how resource availability affects colony growth via demographic mechanisms. To achieve this, we tracked marked individuals in bumble bee (Bombus vosnesenskii) colonies to evaluate whether worker survival and reproduction responded to experimentally elevated forage early in colony development. Specifically, we assessed the effect of early resource environment on worker and sexual offspring production, and the survival and body size of individual workers. We also assessed whether responses of colonies differed when exposed to higher or lower resource environments at a relatively smaller (~ 10 workers) or larger (~ 20 workers) size. Resource supplementation always resulted in greater total offspring and male production; however, the influence of supplementation on worker production and quality depended on colony size at the start of supplementation. Among colonies that were initially smaller, colonies that were supplemented produced fewer but larger bodied and longer lived workers compared to control counterparts. Among colonies that were initially larger, colonies that were supplemented produced more workers than corresponding controls, but without changes to worker quality. Collectively, these results provide clear experimental evidence that greater resource availability early in colony development increases overall productivity, and indicate that colonies may pursue different allocation strategies in response to the resource environment, investing in more or better workers.


Asunto(s)
Ecosistema , Reproducción , Animales , Abejas , Tamaño Corporal , Masculino , Densidad de Población , Estaciones del Año
15.
Proc Natl Acad Sci U S A ; 113(1): 140-5, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26699460

RESUMEN

Wild bees are highly valuable pollinators. Along with managed honey bees, they provide a critical ecosystem service by ensuring stable pollination to agriculture and wild plant communities. Increasing concern about the welfare of both wild and managed pollinators, however, has prompted recent calls for national evaluation and action. Here, for the first time to our knowledge, we assess the status and trends of wild bees and their potential impacts on pollination services across the coterminous United States. We use a spatial habitat model, national land-cover data, and carefully quantified expert knowledge to estimate wild bee abundance and associated uncertainty. Between 2008 and 2013, modeled bee abundance declined across 23% of US land area. This decline was generally associated with conversion of natural habitats to row crops. We identify 139 counties where low bee abundances correspond to large areas of pollinator-dependent crops. These areas of mismatch between supply (wild bee abundance) and demand (cultivated area) for pollination comprise 39% of the pollinator-dependent crop area in the United States. Further, we find that the crops most highly dependent on pollinators tend to experience more severe mismatches between declining supply and increasing demand. These trends, should they continue, may increase costs for US farmers and may even destabilize crop production over time. National assessments such as this can help focus both scientific and political efforts to understand and sustain wild bees. As new information becomes available, repeated assessments can update findings, revise priorities, and track progress toward sustainable management of our nation's pollinators.


Asunto(s)
Abejas/fisiología , Productos Agrícolas , Polinización , Animales , Agricultores , Humanos , Modelos Biológicos , Dinámica Poblacional , Estados Unidos
16.
Biochem Soc Trans ; 46(1): 197-206, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29432142

RESUMEN

Analyses of proteomes from a large number of organisms throughout the domains of life highlight the key role played by multiprotein complexes for the implementation of cellular function. While the occurrence of multiprotein assemblies is ubiquitous, the understanding of pathways that dictate the formation of quaternary structure remains enigmatic. Interestingly, there are now well-established examples of protein complexes that are assembled co-translationally in both prokaryotes and eukaryotes, and indications are that the phenomenon is widespread in cells. Here, we review complex assembly with an emphasis on co-translational pathways, which involve interactions of nascent chains with other nascent or mature partner proteins, respectively. In prokaryotes, such interactions are promoted by the polycistronic arrangement of mRNA and the associated co-translation of functionally related cell constituents in order to enhance otherwise diffusion-dependent processes. Beyond merely stochastic events, however, co-translational complex formation may be sensitive to subunit availability and allow for overall regulation of the assembly process. We speculate how co-translational pathways may constitute integral components of quality control systems to ensure the correct and complete formation of hundreds of heterogeneous assemblies in a single cell. Coupling of folding of intrinsically disordered domains with co-translational interaction of binding partners may furthermore enhance the efficiency and fidelity with which correct conformation is attained. Co-translational complex formation may constitute a fundamental pathway of cellular organization, with profound importance for health and disease.


Asunto(s)
Biosíntesis de Proteínas , Proteínas Intrínsecamente Desordenadas/química , Complejos Multiproteicos/química , Unión Proteica , Pliegue de Proteína , Proteínas/metabolismo
17.
Am J Bot ; 105(7): 1154-1164, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30047984

RESUMEN

PREMISE OF THE STUDY: Wildfire changes the demography, morphology, and behavior of plants, and may alter the pollinator community. Such trait changes may drastically alter the outcome of pollination mutualisms on plants; however, the direct role of fire on these mutualisms is poorly known. METHODS: Following a pair of fires in the northern California coast range chaparral, we censused floral visitor communities of Trichostema laxum (Lamiaceae), quantified visiting bee behavior, and estimated outcrossing rates using a widespread Mendelian recessive floral polymorphism across a matrix of populations in burned and unburned sites. We also compared pre- and postfire floral visitation in two populations. RESULTS: Outcrossing rates were significantly lower in burned areas; however, our data suggest that the much larger size of plants in burned areas, not burn status itself, drove this pattern. Large-bodied bees dominated floral visitor communities after fire, likely recruiting to the abundant postfire floral resources. These bees visited more flowers per plant than did the smaller bees prevalent before fire and in unburned areas, likely increasing selfing through geitonogamy (within-plant pollination), an effect made possible by the far larger size of plants in burned areas. CONCLUSIONS: Outcrossing rates dropped substantially after wildfires because of changes in the pollinators, plant display size, and their interactions. Reductions in outcrossing following fire may have important implications for population resilience and evolution in a changing climate with more frequent fires.


Asunto(s)
Abejas/fisiología , Plantas/anatomía & histología , Animales , California , Flores/anatomía & histología , Flores/fisiología , Fenotipo , Fenómenos Fisiológicos de las Plantas , Polen/anatomía & histología , Polen/fisiología , Polinización , Reproducción , Incendios Forestales
18.
Ecology ; 98(7): 1807-1816, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28445588

RESUMEN

The relationship between biodiversity and the stability of ecosystem function is a fundamental question in community ecology, and hundreds of experiments have shown a positive relationship between species richness and the stability of ecosystem function. However, these experiments have rarely accounted for common ecological patterns, most notably skewed species abundance distributions and non-random extinction risks, making it difficult to know whether experimental results can be scaled up to larger, less manipulated systems. In contrast with the prolific body of experimental research, few studies have examined how species richness affects the stability of ecosystem services at more realistic, landscape scales. The paucity of these studies is due in part to a lack of analytical methods that are suitable for the correlative structure of ecological data. A recently developed method, based on the Price equation from evolutionary biology, helps resolve this knowledge gap by partitioning the effect of biodiversity into three components: richness, composition, and abundance. Here, we build on previous work and present the first derivation of the Price equation suitable for analyzing temporal variance of ecosystem services. We applied our new derivation to understand the temporal variance of crop pollination services in two study systems (watermelon and blueberry) in the mid-Atlantic United States. In both systems, but especially in the watermelon system, the stronger driver of temporal variance of ecosystem services was fluctuations in the abundance of common bee species, which were present at nearly all sites regardless of species richness. In contrast, temporal variance of ecosystem services was less affected by differences in species richness, because lost and gained species were rare. Thus, the findings from our more realistic landscapes differ qualitatively from the findings of biodiversity-stability experiments.


Asunto(s)
Biodiversidad , Ecosistema , Polinización , Animales , Ecología
19.
Glob Chang Biol ; 23(11): 4946-4957, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28488295

RESUMEN

Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.


Asunto(s)
Agricultura/métodos , Artrópodos , Biodiversidad , Ecosistema , Animales
20.
Ecol Lett ; 19(4): 460-8, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26913696

RESUMEN

Bumble bee (Bombus) species are ecologically and economically important pollinators, and many species are in decline. In this article, we develop a mechanistic model to analyse growth trajectories of Bombus vosnesenskii colonies in relation to floral resources and land use. Queen production increased with floral resources and was higher in semi-natural areas than on conventional farms. However, the most important parameter for queen production was the colony growth rate per flower, as opposed to the average number of available flowers. This result indicates the importance of understanding mechanisms of colony growth, in order to predict queen production and enhance bumble bee population viability. Our work highlights the importance of interpreting bumble bee conservation efforts in the context of overall population dynamics and provides a framework for doing so.


Asunto(s)
Abejas/fisiología , Ecosistema , Flores , Animales , Conservación de los Recursos Naturales , Modelos Biológicos , Dinámica Poblacional , Crecimiento Demográfico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA