Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 543(7645): 373-377, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28300113

RESUMEN

During 2015-2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year. Water quality and fishing pressure had minimal effect on the unprecedented bleaching in 2016, suggesting that local protection of reefs affords little or no resistance to extreme heat. Similarly, past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. Consequently, immediate global action to curb future warming is essential to secure a future for coral reefs.


Asunto(s)
Antozoos/metabolismo , Arrecifes de Coral , Calentamiento Global/estadística & datos numéricos , Animales , Australia , Clorofila/metabolismo , Clorofila A , Conservación de los Recursos Naturales/tendencias , Calentamiento Global/prevención & control , Agua de Mar/análisis , Temperatura
2.
Nature ; 502(7473): 677-80, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-24153189

RESUMEN

Globally, reef-building corals are the most prolific producers of dimethylsulphoniopropionate (DMSP), a central molecule in the marine sulphur cycle and precursor of the climate-active gas dimethylsulphide. At present, DMSP production by corals is attributed entirely to their algal endosymbiont, Symbiodinium. Combining chemical, genomic and molecular approaches, we show that coral juveniles produce DMSP in the absence of algal symbionts. DMSP levels increased up to 54% over time in newly settled coral juveniles lacking algal endosymbionts, and further increases, up to 76%, were recorded when juveniles were subjected to thermal stress. We uncovered coral orthologues of two algal genes recently identified in DMSP biosynthesis, strongly indicating that corals possess the enzymatic machinery necessary for DMSP production. Our results overturn the paradigm that photosynthetic organisms are the sole biological source of DMSP, and highlight the double jeopardy represented by worldwide declining coral cover, as the potential to alleviate thermal stress through coral-produced DMSP declines correspondingly.


Asunto(s)
Antozoos/fisiología , Estrés Fisiológico , Compuestos de Sulfonio/metabolismo , Temperatura , Acrilatos/análisis , Acrilatos/metabolismo , Proteínas Algáceas/genética , Animales , Antozoos/genética , Antozoos/metabolismo , Cambio Climático , Fotosíntesis , Metabolismo Secundario , Simbiosis , Factores de Tiempo
3.
Mol Ecol ; 27(4): 1065-1080, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29334418

RESUMEN

Global increases in coral disease prevalence have been linked to ocean warming through changes in coral-associated bacterial communities, pathogen virulence and immune system function. However, the interactive effects of temperature and pathogens on the coral holobiont are poorly understood. Here, we assessed three compartments of the holobiont (host, Symbiodinium and bacterial community) of the coral Montipora aequituberculata challenged with the pathogen Vibrio coralliilyticus and the commensal bacterium Oceanospirillales sp. under ambient (27°C) and elevated (29.5 and 32°C) seawater temperatures. Few visual signs of bleaching and disease development were apparent in any of the treatments, but responses were detected in the holobiont compartments. V. coralliilyticus acted synergistically and negatively impacted the photochemical efficiency of Symbiodinium at 32°C, while Oceanospirillales had no significant effect on photosynthetic efficiency. The coral, however, exhibited a minor response to the bacterial challenges, with the response towards V. coralliilyticus being significantly more pronounced, and involving the prophenoloxidase-activating system and multiple immune system-related genes. Elevated seawater temperatures did not induce shifts in the coral-associated bacterial community, but caused significant gene expression modulation in both Symbiodinium and the coral host. While Symbiodinium exhibited an antiviral response and upregulated stress response genes, M. aequituberculata showed regulation of genes involved in stress and innate immune response processes, including immune and cytokine receptor signalling, the complement system, immune cell activation and phagocytosis, as well as molecular chaperones. These observations show that M. aequituberculata is capable of maintaining a stable bacterial community under elevated seawater temperatures and thereby contributes to preventing disease development.


Asunto(s)
Antozoos/microbiología , Antiinfecciosos/farmacología , Arrecifes de Coral , Estrés Fisiológico/efectos de los fármacos , Temperatura , Animales , Antozoos/efectos de los fármacos , Antozoos/genética , Regulación de la Expresión Génica/efectos de los fármacos , Agua de Mar , Estrés Fisiológico/genética , Transcriptoma/genética
4.
Heredity (Edinb) ; 121(6): 524-536, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29453423

RESUMEN

Determining the extent to which Symbiodinium communities in corals are inherited versus environmentally acquired is fundamental to understanding coral resilience and to predicting coral responses to stressors like warming oceans that disrupt this critical endosymbiosis. We examined the fidelity with which Symbiodinium communities in the brooding coral Seriatopora hystrix are vertically transmitted and the extent to which communities are genetically regulated, by genotyping the symbiont communities within 60 larvae and their parents (9 maternal and 45 paternal colonies) using high-throughput sequencing of the ITS2 locus. Unexpectedly, Symbiodinium communities associated with brooded larvae were distinct from those within parent colonies, including the presence of types not detected in adults. Bayesian heritability (h2) analysis revealed that 33% of variability in larval Symbiodinium communities was genetically controlled. Results highlight flexibility in the establishment of larval symbiont communities and demonstrate that symbiont transmission is not exclusively vertical in brooding corals. Instead, we show that Symbiodinium transmission in S. hystrix involves a mixed-mode strategy, similar to many terrestrial invertebrate symbioses. Also, variation in the abundances of common Symbiodinium types among adult corals suggests that microhabitat differences influence the structure of in hospite Symbiodinium communities. Partial genetic regulation coupled with flexibility in the environmentally acquired component of Symbiodinium communities implies that corals with vertical transmission, like S. hystrix, may be more resilient to environmental change than previously thought.


Asunto(s)
Alveolados/genética , Antozoos/parasitología , Regulación de la Expresión Génica , Animales , Larva/genética , Simbiosis
5.
Appl Environ Microbiol ; 83(2)2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27815275

RESUMEN

Coral tissue loss diseases, collectively known as white syndromes (WSs), induce significant mortality on reefs throughout the Indo-Pacific, yet definitive confirmation of WS etiologies remains elusive. In this study, we integrated ecological disease monitoring, bacterial community profiling, in situ visualization of microbe-host interactions, and cellular responses of the host coral through an 18-month repeated-sampling regime. We assert that the observed pathogenesis of WS lesions on acroporid corals at Lizard Island (Great Barrier Reef) is not the result of apoptosis or infection by Vibrio bacteria, ciliates, fungi, cyanobacteria, or helminths. Histological analyses detected helminths, ciliates, fungi, and cyanobacteria in fewer than 25% of WS samples, and helminths and fungi were also observed in 12% of visually healthy samples. The abundances of Vibrio-affiliated sequences (assessed using 16S rRNA amplicon sequencing) did not differ significantly between health states and never exceeded 3.3% of reads in any individual sample. In situ visualization detected Vibrio bacteria only in summer WS lesion samples and revealed no signs of these bacteria in winter disease samples (or any healthy tissue samples), despite continued disease progression year round. However, a 4-fold increase in Rhodobacteraceae-affiliated bacterial sequences at WS lesion fronts suggests that this group of bacteria could play a role in WS pathogenesis and/or serve as a diagnostic criterion for disease differentiation. While the causative agent(s) underlying WSs remains elusive, the microbial and cellular processes identified in this study will help to identify and differentiate visually similar but potentially distinct WS etiologies. IMPORTANCE: Over the past decade, a virulent group of coral diseases known as white syndromes have impacted coral reefs throughout the Indian and Pacific Oceans. This article provides a detailed case study of white syndromes to combine disease ecology, high-throughput microbial community profiling, and cellular-scale host-microbe visualization over seasonal time scales. We provide novel insights into the etiology of this devastating disease and reveal new diagnostic criteria that could be used to differentiate visually similar but etiologically distinct forms of white syndrome.


Asunto(s)
Antozoos/microbiología , Bacterias/aislamiento & purificación , Microbiota , Animales , Bacterias/genética , Arrecifes de Coral , Queensland , Estaciones del Año
6.
Environ Microbiol ; 18(3): 752-65, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26549807

RESUMEN

Emerging infectious diseases are contributing to global declines in coral reef ecosystems, highlighting a growing need for aetiological knowledge to develop effective management strategies. In this review, we focus on black band disease (BBD), one of the most virulent diseases and the only polymicrobial disease so far known to affect corals. A multipartite microbial consortium dominated by Cyanobacteria, but also including sulfur-cycling bacteria, other bacterial groups and members of the Archaea and Eukarya, forms a sulfide-rich anaerobic mat that migrates across the surface of coral colonies, killing the underlying tissues. The polymicrobial nature of the disease challenges classic aetiological approaches to unravelling disease causation. Here, we synthesize current knowledge on the range of pathogens forming the microbial consortium with recent studies on the transmission, biogeochemistry and environmental drivers of BBD to develop a conceptual model of BBD pathogenesis. The model illustrates how the development of BBD virulence factors is linked to a cascade of microbial community shifts and associated functional roles that progressively develop the microbial consortium from comparatively benign cyanobacterial patches to virulent BBD lesions. This review showcases how an approach that integrates multiple key aspects of the disease provides insights essential to elucidating the aetiology of BBD.


Asunto(s)
Antozoos/microbiología , Animales , Arrecifes de Coral , Cianobacterias/fisiología , Ecosistema , Consorcios Microbianos
7.
Mol Ecol ; 25(6): 1398-415, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-26818771

RESUMEN

Within populations of brooding sessile corals, sperm dispersal constitutes the mechanism by which gametes interact and mating occurs, and forms the first link in the network of processes that determine specieswide connectivity patterns. However, almost nothing is known about sperm dispersal for any internally fertilizing coral. In this study, we conducted a parentage analysis on coral larvae collected from an area of mapped colonies, to measure the distance sperm disperses for the first time in a reef-building coral and estimated the mating system characteristics of a recently identified putative cryptic species within the Seriatopora hystrix complex (ShA; Warner et al. 2015). We defined consensus criteria among several replicated methods (COLONY 2.0, CERVUS 3.0, MLTR v3.2) to maximize accuracy in paternity assignments. Thirteen progeny arrays indicated that this putative species produces exclusively sexually derived, primarily outcrossed larvae (mean t(m) = 0.999) in multiple paternity broods (mean r(p) = 0.119). Self-fertilization was directly detected at low frequency for all broods combined (2.8%), but comprised 23% of matings in one brood. Although over 82% of mating occurred between colonies within 10 m of each other (mean sperm dispersal = 5.5 m ± 4.37 SD), we found no evidence of inbreeding in the established population. Restricted dispersal of sperm compared to slightly greater larval dispersal appears to limit inbreeding among close relatives in this cryptic species. Our findings establish a good basis for further work on sperm dispersal in brooding corals and provide the first information about the mating system of a newly identified and abundant cryptic species.


Asunto(s)
Antozoos/genética , Genética de Población , Autofecundación , Espermatozoides , Animales , Antozoos/fisiología , Australia , Genotipo , Larva/genética , Masculino , Reproducción/genética , Análisis de Secuencia de ADN
8.
Mol Ecol ; 24(12): 2993-3008, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25943487

RESUMEN

Mounting evidence of cryptic species in a wide range of taxa highlights the need for careful analyses of population genetic data sets to unravel within-species diversity from potential interspecies relationships. Here, we use microsatellite loci and hierarchical clustering analysis to investigate cryptic diversity in sympatric and allopatric (separated by 450 km) populations of the widespread coral Seriatopora hystrix on the Great Barrier Reef. Structure analyses delimited unique genetic clusters that were confirmed by phylogenetic and extensive population-level analyses. Each of four sympatric yet distinct genetic clusters detected within S. hystrix demonstrated greater genetic cohesion across regional scales than between genetic clusters within regions (<10 km). Moreover, the magnitude of genetic differentiation between different clusters (>0.620 G"ST ) was similar to the difference between S. hystrix clusters and the congener S. caliendrum (mean G"ST 0.720). Multiple lines of evidence, including differences in habitat specificity, mitochondrial identity, Symbiodinium associations and morphology, corroborate the nuclear genetic evidence that these distinct clusters constitute different species. Hierarchical clustering analysis combined with more traditional population genetic methods provides a powerful approach for delimiting species and should be regularly applied to ensure that ecological and evolutionary patterns interpreted for single species are not confounded by the presence of cryptic species.


Asunto(s)
Antozoos/clasificación , Especiación Genética , Genética de Población , Animales , Antozoos/genética , Australia , Núcleo Celular/genética , Análisis por Conglomerados , ADN Mitocondrial/genética , Dinoflagelados/genética , Ecosistema , Genotipo , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Simpatría
9.
Mol Ecol ; 24(13): 3390-404, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26095670

RESUMEN

Increasing physical damage on coral reefs from predation, storms and anthropogenic disturbances highlights the need to understand the impact of injury on the coral immune system. In this study, we examined the regulation of the coral immune response over 10 days following physical trauma artificially inflicted on in situ colonies of the coral Acropora aspera, simultaneously with bacterial colonization of the lesions. Corals responded to injury by increasing the expression of immune system-related genes involved in the Toll-like and NOD-like receptor signalling pathways and the lectin-complement system in three phases (<2, 4 and 10 days post-injury). Phenoloxidase activity was also significantly upregulated in two phases (<3 and 10 days post-injury), as were levels of non-fluorescent chromoprotein. In addition, green fluorescent protein expression was upregulated in response to injury from 4 days post-injury, while cyan fluorescent protein expression was reduced. No shifts in the composition of coral-associated bacterial communities were evident following injury based on 16S rRNA gene amplicon pyrosequencing. Bacteria-specific fluorescence in situ hybridization also showed no evidence of bacterial colonization of the wound or regenerating tissues. Coral tissues showed near-complete regeneration of lesions within 10 days. This study demonstrates that corals exhibit immune responses that support rapid recovery following physical injury, maintain coral microbial homeostasis and prevent bacterial infestation that may compromise coral fitness.


Asunto(s)
Antozoos/inmunología , Antozoos/microbiología , Bacterias/patogenicidad , Regeneración , Animales , Bacterias/aislamiento & purificación , Inmunidad Innata , Proteínas Adaptadoras de Señalización NOD/genética , Transducción de Señal , Receptores Toll-Like/genética
10.
Ecology ; 96(9): 2555-67, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26594711

RESUMEN

Parks and protected areas have been instrumental in reducing anthropogenic sources of damage in terrestrial and aquatic environments. Pathogen invasion often succeeds physical wounding and injury, yet links between the reduction of damage and the moderation of disease have not been assessed. Here, we examine the utility of no-take marine reserves as tools for mitigating diseases that affect reef-building corals. We found that sites located within reserves had fourfold reductions in coral disease prevalence compared to non-reserve sites (80466 corals surveyed). Of 31 explanatory variables assessed, coral damage and the abundance of derelict fishing line best explained differences in disease assemblages between reserves and non-reserves. Unexpectedly, we recorded significantly higher levels of disease, coral damage, and derelict fishing line in non-reserves with fishing gear restrictions than in those without gear restrictions. Fishers targeting stocks perceived to be less depleted, coupled with enhanced site access from immediately adjacent boat moorings, may explain these unexpected patterns. Significant correlations between the distance from mooring sites and prevalence values for a ciliate disease known to infest wounded tissue (r = -0.65), coral damage (r = -0.64), and the abundance of derelict fishing line (r = -0.85) corroborate this interpretation. This is the first study to link disease with recreational use intensity in a park, emphasizing the need to evaluate the placement of closures and their direct relationship to ecosystem health. Since corals are modular, ecological processes that govern reproductive and competitive fitness are frequently related to colony surface area therefore, even low levels of cumulative tissue loss from progressing diseases pose significant threats to reef coral persistence. Disease mitigation through reductions in physical injury in areas where human activities are concentrated is another mechanism by which protected areas may improve ecosystem resilience in a changing climate.


Asunto(s)
Antozoos/fisiología , Conservación de los Recursos Naturales/métodos , Arrecifes de Coral , Peces , Animales , Australia , Biodiversidad , Interacciones Huésped-Patógeno
11.
Environ Microbiol ; 16(10): 3345-59, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24373029

RESUMEN

Diazotrophic bacteria potentially play an important functional role in supplying fixed nitrogen to the coral holobiont, but the value of such a partnership depends on the stability of the association. Here we evaluate the composition of diazotroph assemblages associated with the coral Acropora millepora throughout four seasons and at two reefs, an inshore and an offshore (mid-shelf) reef on the Great Barrier Reef, Australia. Amplicon pyrosequencing of the nifH gene revealed that diazotrophs are ubiquitous members of the bacterial community associated with A. millepora. Rhizobia (65% of the overall nifH sequences retrieved) and particularly Bradyrhizobia sp.-affiliated sequences (> 50% of rhizobia sequences) dominated diazotrophic assemblages across all coral samples from the two sites throughout the year. In contrast to this consistency in the spatial and temporal patterns of occurrence of diazotroph assemblages, the overall coral-associated bacterial community, assessed through amplicon sequencing of the general bacterial 16S ribosomal RNA gene, differed between inshore and mid-shelf reef locations. Sequences associated with the Oceanospirillales family, particularly with Endozoicomonas sp., dominated bacterial communities associated with inshore corals. Although rhizobia represented a variable and generally small fraction of the overall bacterial community associated with A. millepora, consistency in the structure of these diazotrophic assemblages suggests that they have a functional role in the coral holobiont.


Asunto(s)
Antozoos/microbiología , Bacterias/clasificación , Microbiota , Fijación del Nitrógeno , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Microbiota/genética , Fijación del Nitrógeno/genética , Oxidorreductasas/genética , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
12.
Mol Ecol ; 23(19): 4682-95, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25156176

RESUMEN

Early establishment of coral-microbial symbioses is fundamental to the fitness of corals, but comparatively little is known about the onset and succession of bacterial communities in their early life history stages. In this study, bacterial associates of the coral Acropora millepora were characterized throughout the first year of life, from larvae and 1-week-old juveniles reared in laboratory conditions in the absence of the dinoflagellate endosymbiont Symbiodinium to field-outplanted juveniles with established Symbiodinium symbioses, and sampled at 2 weeks and at 3, 6 and 12 months. Using an amplicon pyrosequencing approach, the diversity of both nitrogen-fixing bacteria and of bacterial communities overall was assessed through analysis of nifH and 16S rRNA genes, respectively. The consistent presence of sequences affiliated with diazotrophs of the order Rhizobiales (23-58% of retrieved nifH sequences; 2-12% of 16S rRNA sequences), across all samples from larvae to 12-month-old coral juveniles, highlights the likely functional importance of this nitrogen-fixing order to the coral holobiont. Dominance of Roseobacter-affiliated sequences (>55% of retrieved 16S rRNA sequences) in larvae and 1-week-old juveniles, and the consistent presence of sequences related to Oceanospirillales and Altermonadales throughout all early life history stages, signifies their potential importance as coral associates. Increased diversity of bacterial communities once juveniles were transferred to the field, particularly of Cyanobacteria and Deltaproteobacteria, demonstrates horizontal (environmental) uptake of coral-associated bacterial communities. Although overall bacterial communities were dynamic, bacteria with likely important functional roles remain stable throughout early life stages of Acropora millepora.


Asunto(s)
Antozoos/microbiología , Bacterias/clasificación , Filogenia , Simbiosis , Animales , Antozoos/crecimiento & desarrollo , Bacterias/genética , Genes Bacterianos , Estadios del Ciclo de Vida , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
13.
Environ Microbiol ; 15(11): 2994-3007, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24112537

RESUMEN

Black band disease (BBD) is a microbial consortium that creates anoxic, sulfide-rich microenvironments and kills underlying coral tissues as it rapidly migrates across colonies. Although bacterial communities associated with BBD have been studied extensively, the presence and roles of archaea are unexplored. Using amplicon-pyrosequencing of 16S ribosomal RNA genes, we investigated the community structure of both archaea and bacteria within microbial lesions of BBD and the less-virulent precursor stage, 'cyanobacterial patches' (CP), affecting the coral Montipora hispida. We detected characteristic shifts in microbial communities during the development of BBD from CP, reflecting microenvironmental changes within lesions. Archaeal profiles in CP suggested a diverse assemblage affiliated with the Thaumarchaeota and Euryarchaeota, similar to communities described for oxic marine environments. In contrast, a novel ribotype, distantly affiliated to the Euryarchaeota, dominated up to 94% of archaeal sequences retrieved from BBD. The physiological characteristics of this dominant archaeal ribotype are unknown because of the novelty of its 16S ribosomal RNA gene sequences; however, their prominent associations with BBD lesions suggest the ability to thrive in the organic- and sulfide-rich anoxic microenvironment characteristic of BBD lesions. Discovery of this novel archaeal ribotype provides new insights into the microbial ecology and aetiology of BBD.


Asunto(s)
Antozoos/microbiología , Cianobacterias/genética , Euryarchaeota/genética , Consorcios Microbianos/genética , ARN Ribosómico 16S/genética , Animales , Secuencia de Bases , Microambiente Celular , ADN de Archaea/genética , ADN Bacteriano/genética , Datos de Secuencia Molecular , Filogenia , Ribotipificación , Análisis de Secuencia de ADN
14.
PLoS Pathog ; 7(10): e1002183, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22028646

RESUMEN

Coral disease has emerged over recent decades as a significant threat to coral reef ecosystems, with declines in coral cover and diversity of Caribbean reefs providing an example of the potential impacts of disease at regional scales. If similar trends are to be mitigated or avoided on reefs worldwide, a deeper understanding of the factors underlying the origin and spread of coral diseases and the steps that can be taken to prevent, control, or reduce their impacts is required. In recent years, an increased focus on coral microbiology and the application of classic culture techniques and emerging molecular technologies has revealed several coral pathogens that could serve as targets for novel coral disease diagnostic tools. The ability to detect and quantify microbial agents identified as indicators of coral disease will aid in the elucidation of disease causation and facilitate coral disease detection and diagnosis, pathogen monitoring in individuals and ecosystems, and identification of pathogen sources, vectors, and reservoirs. This information will advance the field of coral disease research and contribute knowledge necessary for effective coral reef management. This paper establishes the need for sensitive and specific molecular-based coral pathogen detection, outlines the emerging technologies that could serve as the basis of a new generation of coral disease diagnostic assays, and addresses the unique challenges inherent to the application of these techniques to environmentally derived coral samples.


Asunto(s)
Enfermedades de los Animales/diagnóstico , Antozoos/microbiología , Enfermedades de los Animales/genética , Enfermedades de los Animales/microbiología , Animales , Antozoos/fisiología , Ecosistema , Monitoreo del Ambiente/métodos , Interacciones Huésped-Patógeno , Valor Predictivo de las Pruebas
15.
Mol Ecol ; 22(14): 3693-708, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23730715

RESUMEN

The dinoflagellate photosymbiont Symbiodinium plays a fundamental role in defining the physiological tolerances of coral holobionts, but little is known about the dynamics of these endosymbiotic populations on coral reefs. Sparse data indicate that Symbiodinium populations show limited spatial connectivity; however, no studies have investigated temporal dynamics for in hospite Symbiodinium populations following significant mortality and recruitment events in coral populations. We investigated the combined influences of spatial isolation and disturbance on the population dynamics of the generalist Symbiodinium type C2 (ITS1 rDNA) hosted by the scleractinian coral Acropora millepora in the central Great Barrier Reef. Using eight microsatellite markers, we genotyped Symbiodinium in a total of 401 coral colonies, which were sampled from seven sites across a 12-year period including during flood plume-induced coral bleaching. Genetic differentiation of Symbiodinium was greatest within sites, explaining 70-86% of the total genetic variation. An additional 9-27% of variation was explained by significant differentiation of populations among sites separated by 0.4-13 km, which is consistent with low levels of dispersal via water movement and historical disturbance regimes. Sampling year accounted for 6-7% of total genetic variation and was related to significant coral mortality following severe bleaching in 1998 and a cyclone in 2006. Only 3% of the total genetic variation was related to coral bleaching status, reflecting generally small (8%) reductions in allelic diversity within bleached corals. This reduction probably reflected a loss of genotypes in hospite during bleaching, although no site-wide changes in genetic diversity were observed. Combined, our results indicate the importance of disturbance regimes acting together with limited oceanographic transport to determine the genetic composition of Symbiodinium types within reefs.


Asunto(s)
Antozoos/fisiología , Dinoflagelados/fisiología , Dinámica Poblacional , Simbiosis/genética , Animales , Antozoos/genética , Arrecifes de Coral , ADN Ribosómico/genética , Dinoflagelados/genética , Repeticiones de Microsatélite/genética
16.
Ecology ; 94(5): 1078-88, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23858648

RESUMEN

Knowledge of the degree to which corals undergo physiological acclimatization or genetic adaptation in response to changes in their thermal environment is crucial to the success of coral reef conservation strategies. The potential of corals to acclimatize to temperatures exceeding historical thermal regimes was investigated by reciprocal transplantation of Acropora millepora colonies between the warm central and cool southern regions of the Great Barrier Reef (GBR) for a duration of 14 months. Colony fragments retained at native sites remained healthy, whereas transplanted fragments, although healthy over initial months when temperatures remained within native thermal regimes, subsequently bleached and suffered mortality during seasonal temperature extremes. Corals hosting Symbiodinium D transplanted to the southern GBR bleached in winter and the majority suffered whole (40%; n=20 colonies) or partial (50%) mortality at temperatures 1.1 degrees C below their 15-year native minimum. In contrast, corals hosting Symbiodinium C2 transplanted to the central GBR bleached in summer and suffered whole (50%; n=10 colonies) or partial (42%) mortality at temperatures 2.5 degrees C above their 15-year native maximum. During summer bleaching, the dominant Symbiodinium type changed from C2 to D within corals transplanted to the central GBR. Corals transplanted to the cooler, southern GBR grew 74-80% slower than corals at their native site, and only 50% of surviving colonies reproduced, at least partially because of cold water bleaching of transplants. Despite the absence of any visual signs of stress, corals transplanted to the warmer, central GBR grew 52-59% more slowly than corals at their native site before the summer bleaching (i.e., from autumn to spring). Allocation of energy to initial acclimatization or reproduction may explain this pattern, as the majority (65%) of transplants reproduced one month earlier than portions of the same colonies retained at the southern native site. All parameters investigated (bleaching, mortality, Symbiodinium type fidelity, reproductive timing) demonstrated strong interactions between genotype and environment, indicating that the acclimatization potential of A. millepora populations may be limited by adaptation of the holobiont to native thermal regimes.


Asunto(s)
Aclimatación , Antozoos/fisiología , Arrecifes de Coral , Calor , Animales , Factores de Tiempo
17.
Oecologia ; 173(2): 431-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23525803

RESUMEN

Demographic connectivity requires both the dispersal of individuals between sub-populations, and their subsequent contribution to population dynamics. For planktonic, non-feeding marine larvae, the capacity to delay settlement enables greater dispersal distances, but the energetic cost of delayed settlement has been shown to adversely impact post-settlement fitness in several taxa. Here, we assess whether delayed settlement influences mortality rates or growth rates for the first 6 weeks following settlement of the scleractinian coral, Acropora tenuis. Coral larvae that were settled at 2, 4, and 6 weeks after spawning, and then deployed in the field, showed negligible effects of delayed settlement on post-settlement survival and time to initial budding for colony formation. Between-cohort differences in budding rate appeared to be explained by temporal variation in the post-settlement acquisition of zooxanthellae. The potential for coral larvae to remain in the pelagic zone for increased periods of time with little to no effect on post-settlement survival and growth suggests that the capacity for delayed settlement is likely to have meaningful demographic consequences for broadcast-spawning reef-building corals, and that the predicted trade-off between delayed settlement and post-settlement fitness is less applicable to reef-building scleractinian corals than other taxa with non-feeding larvae.


Asunto(s)
Antozoos/fisiología , Arrecifes de Coral , Animales , Antozoos/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/fisiología , Longevidad , Dinámica Poblacional , Queensland
18.
Appl Environ Microbiol ; 78(9): 3136-44, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22344646

RESUMEN

The complex symbiotic relationship between corals and their dinoflagellate partner Symbiodinium is believed to be sustained through close associations with mutualistic bacterial communities, though little is known about coral associations with bacterial groups able to fix nitrogen (diazotrophs). In this study, we investigated the diversity of diazotrophic bacterial communities associated with three common coral species (Acropora millepora, Acropora muricata, and Pocillopora damicormis) from three midshelf locations of the Great Barrier Reef (GBR) by profiling the conserved subunit of the nifH gene, which encodes the dinitrogenase iron protein. Comparisons of diazotrophic community diversity among coral tissue and mucus microenvironments and the surrounding seawater revealed that corals harbor diverse nifH phylotypes that differ between tissue and mucus microhabitats. Coral mucus nifH sequences displayed high heterogeneity, and many bacterial groups overlapped with those found in seawater. Moreover, coral mucus diazotrophs were specific neither to coral species nor to reef location, reflecting the ephemeral nature of coral mucus. In contrast, the dominant diazotrophic bacteria in tissue samples differed among coral species, with differences remaining consistent at all three reefs, indicating that coral-diazotroph associations are species specific. Notably, dominant diazotrophs for all coral species were closely related to the bacterial group rhizobia, which represented 71% of the total sequences retrieved from tissue samples. The species specificity of coral-diazotroph associations further supports the coral holobiont model that bacterial groups associated with corals are conserved. Our results suggest that, as in terrestrial plants, rhizobia have developed a mutualistic relationship with corals and may contribute fixed nitrogen to Symbiodinium.


Asunto(s)
Antozoos/microbiología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Biodiversidad , Fijación del Nitrógeno , Simbiosis , Animales , Antozoos/fisiología , Australia , Bacterias/genética , Bacterias/metabolismo , Fenómenos Fisiológicos Bacterianos , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , Datos de Secuencia Molecular , Oxidorreductasas/genética , Filogenia , Análisis de Secuencia de ADN
19.
Dis Aquat Organ ; 100(3): 249-61, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22968792

RESUMEN

Coral diseases are taking an increasing toll on coral reef structure and biodiversity and are important indicators of declining health in the oceans. We implemented standardized coral disease surveys to pinpoint hotspots of coral disease, reveal vulnerable coral families and test hypotheses about climate drivers from 39 locations worldwide. We analyzed a 3 yr study of coral disease prevalence to identify links between disease and a range of covariates, including thermal anomalies (from satellite data), location and coral cover, using a Generalized Linear Mixed Model. Prevalence of unhealthy corals, i.e. those with signs of known diseases or with other signs of compromised health, exceeded 10% on many reefs and ranged to over 50% on some. Disease prevalence exceeded 10% on 20% of Caribbean reefs and 2.7% of Pacific reefs surveyed. Within the same coral families across oceans, prevalence of unhealthy colonies was higher and some diseases were more common at sites in the Caribbean than those in the Pacific. The effects of high disease prevalence are potentially extensive given that the most affected coral families, the acroporids, faviids and siderastreids, are among the major reef-builders at these sites. The poritids and agaricids stood out in the Caribbean as being the most resistant to disease, even though these families were abundant in our surveys. Regional warm temperature anomalies were strongly correlated with high disease prevalence. The levels of disease reported here will provide a much-needed local reference point against which to compare future change.


Asunto(s)
Antozoos , Océanos y Mares , Temperatura , Animales , Arrecifes de Coral , Factores de Tiempo
20.
Environ Manage ; 49(1): 1-13, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22042407

RESUMEN

Predicted increases in coral disease outbreaks associated with climate change have implications for coral reef ecosystems and the people and industries that depend on them. It is critical that coral reef managers understand these implications and have the ability to assess and reduce risk, detect and contain outbreaks, and monitor and minimise impacts. Here, we present a coral disease response framework that has four core components: (1) an early warning system, (2) a tiered impact assessment program, (3) scaled management actions and (4) a communication plan. The early warning system combines predictive tools that monitor the risk of outbreaks of temperature-dependent coral diseases with in situ observations provided by a network of observers who regularly report on coral health and reef state. Verified reports of an increase in disease prevalence trigger a tiered response of more detailed impact assessment, targeted research and/or management actions. The response is scaled to the risk posed by the outbreak, which is a function of the severity and spatial extent of the impacts. We review potential management actions to mitigate coral disease impacts and facilitate recovery, considering emerging strategies unique to coral disease and more established strategies to support reef resilience. We also describe approaches to communicating about coral disease outbreaks that will address common misperceptions and raise awareness of the coral disease threat. By adopting this framework, managers and researchers can establish a community of practice and can develop response plans for the management of coral disease outbreaks based on local needs. The collaborations between managers and researchers we suggest will enable adaptive management of disease impacts following evaluating the cost-effectiveness of emerging response actions and incrementally improving our understanding of outbreak causation.


Asunto(s)
Antozoos/fisiología , Conservación de los Recursos Naturales/métodos , Arrecifes de Coral , Animales , Cambio Climático , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA