Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Ecol ; 32(23): 6210-6222, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35712991

RESUMEN

Zooplankton plays an essential role in marine ecosystems as the link between primary producers (phytoplankton) and higher trophic levels in food webs, and as a dynamic pool of recruits for invertebrates and fish. Zooplankton communities are diverse with a patchy distribution at different spatial scales, influenced by oceanographic processes. The continental shelf of eastern South Africa is narrow and exposed to the western-boundary Agulhas Current, with some shelter against strong directional flow provided by the broader KwaZulu-Natal Bight, a coastal offset adjacent to an estuary. We compared zooplankton species richness, diversity and relative abundance of key taxa among sheltered and exposed shelf areas using metabarcoding and community analysis, to explore the ecological role of the bight in a highly dynamic ocean region. Metabarcoding recovered higher richness and diversity at a finer resolution than could previously be achieved with traditional microscopy. Of 271 operational taxonomic units (OTUs) recovered through metabarcoding, 63% could be matched with >95% sequence similarity to reference barcodes. OTUs were dominated by malacostracan crustaceans (161 spp.), ray-finned fishes (45 spp.) and copepods (28 spp.). Species richness, diversity and the relative abundance of key taxa differed between sheltered and exposed shelf areas. Lower species richness in the bight was partly attributed to structurally homogeneous benthic habitats, and an associated reduction of meroplanktonic species originating from local benthic-pelagic exchange. High relative abundance of a ray-finned fish in the bight, as observed based on fish eggs and read counts, confirmed that the bight is an important fish spawning area. Overall, zooplankton metabarcoding outputs were congruent with findings of previous ecological research using more traditional methods of observation.


Asunto(s)
Ecosistema , Zooplancton , Animales , Zooplancton/genética , Sudáfrica , Cadena Alimentaria , Fitoplancton , Peces
2.
Ecol Appl ; 32(1): e02469, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34626511

RESUMEN

Metabarcoding to determine the species composition and diversity of marine zooplankton communities is a fast-developing field in which the standardization of methods is yet to be fully achieved. The selection of genetic markers and primer choice are particularly important because they substantially influence species detection rates and accuracy. Validation is therefore an important step in the design of metabarcoding protocols. We developed taxon-specific mini-barcode primers for the cytochrome c oxidase subunit I (COI) gene region and used an experimental approach to test species detection rates and primer accuracy of the newly designed primers for prawns, shrimps and crabs and published primers for marine lobsters and fish. Artificially assembled mock communities (with known species ratios) and unsorted coastal tow-net zooplankton samples were sequenced and the detected species were compared with those seeded in mock communities to test detection rates. Taxon-specific primers increased detection rates of target taxa compared with a universal primer set. Primer cocktails (multiple primer sets) significantly increased species detection rates compared with single primer pairs and could detect up to 100% of underrepresented target taxa in mock communities. Taxon-specific primers recovered fewer false-positive or false-negative results than the universal primer. The methods used to design taxon-specific mini-barcodes and the experimental mock community validation protocols shown here can easily be applied to studies on other groups and will allow for a level of standardization among studies undertaken in different ecosystems or geographic locations.


Asunto(s)
Código de Barras del ADN Taxonómico , Zooplancton , Animales , Código de Barras del ADN Taxonómico/métodos , Ecosistema , Peces , Marcadores Genéticos , Zooplancton/genética
3.
BMC Evol Biol ; 15: 235, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26518602

RESUMEN

BACKGROUND: The Commerson's leaf-nosed bat, Hipposideros commersoni sensu stricto, is endemic to Madagascar and is relatively common in the western portion of the island, where it is found in areas, including forested zones, from sea level to 1325 m. A previous study on morphological patterns of geographic variation within the species highlighted the presence of two distinct morphotypes; larger individuals in the north portion of the island and smaller individuals in the south. The main aim of this study was to use a combination of craniodental morphology and molecular data (mitochondrial and nuclear) to test previous hypotheses based on morphology and clarify the evolutionary history of the species group. METHODS: We sequenced mitochondrial and nuclear genes from Hipposideros commersoni obtained from the western portion of Madagascar, and compared them with other African species as outgroups. We analyzed the sequence data using Maximum Likelihood and Bayesian phylogenetic inference. Divergence dates were estimated using Bayesian molecular clock approach. Variation in craniodental variables was also assessed from sequenced individuals. RESULTS: The molecular analyses suggest that H. commersoni is not monophyletic, with strong support for the presence of several independently evolving lineages. Two individuals amongst those sequenced from Isalo (south central) and Itampolo (southwest) form a separate clade (Clade A), distinct from other H. commersoni, and sister to continental African H. vittatus and H. gigas. Within the H. commersoni clade, the molecular data support two geographically distributed clades; one from the south (Clade B) and the other from the north (Clade C), which diverged approximately 3.38 million years ago. Morphometric data were consistent with the molecular analyses, suggesting a north-south break within H. commersoni. However, at some localities, animals from both clades occurred in sympatry and these individuals could not be differentiated based on external and craniodental measurements. CONCLUSIONS: Using a combination of molecular and morphological characters, this study presents evidence of cryptic diversity in H. commersoni on Madagascar. Further fine-scale phylogeographic studies are needed to fully resolve the systematics of H. commersoni. This study highlights the utility of the combined approach in employing both morphological and molecular data to provide insights into the evolutionary history of Malagasy population currently assigned to H. commersoni.


Asunto(s)
Quirópteros/clasificación , África , Animales , Teorema de Bayes , Quirópteros/anatomía & histología , Quirópteros/genética , Femenino , Especiación Genética , Madagascar , Masculino , Filogenia , Análisis de Secuencia de ADN
4.
Reprod Fertil ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39028631

RESUMEN

Microbiomes have emerged as a key component essential for maintaining the health of an organism. Additionally, the roles of microbiomes are multifaceted, some unique to specific body areas and organs while others, particularly the gut microbiome, having broader effects on the entire organism. Comparative literature is emerging that compares microbiomes across mammals and birds. Domestic poultry have been the most extensively studied relative to their role in production agriculture. These data have provided a great deal of information about the effects of diet and nutritional requirements relative to the gut microbiome, productivity, and resilience to diseases. Conversely, limited such research has been conducted on wild birds, despite them inhabiting a broad array of ecological niches and environments, providing a rich diversity in their adaptations to different habitats. Migratory birds and raptors are of particular interest. Migratory birds encounter a range of ecosystems and provide a link between allopatric populations. Raptors occupy high positions in the food chain, with potential exposure to biomagnification of environmental contaminants and pathogens. This review overviews our current understanding of the structure and function of avian microbiomes as related to avian health and reproduction in domestic and wild birds, highlighting knowledge gaps in need of further investigation for more effective conservation of rapidly declining avian populations.

5.
Ecol Evol ; 14(4): e11315, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38660470

RESUMEN

The black-footed cat (Felis nigripes) is endemic to the arid regions of southern Africa. One of the world's smallest wild felids, the species occurs at low densities and is secretive and elusive, which makes ecological studies difficult. Genetic data could provide key information such as estimates on population size, sex ratios, and genetic diversity. In this study, we test if microsatellite loci can be successfully amplified from scat samples that could be noninvasively collected from the field. Using 21 blood and scat samples collected from the same individuals, we statistically tested whether nine microsatellites previously designed for use in domestic cats can be used to identify individual black-footed cats. Genotypes recovered from blood and scat samples were compared to assess loss of heterozygosity, allele dropout, and false alleles resulting from DNA degradation or PCR inhibitors present in scat samples. The microsatellite markers were also used to identify individuals from scats collected in the field that were not linked to any blood samples. All nine microsatellites used in this study were amplified successfully and were polymorphic. Microsatellite loci were found to have sufficient discriminatory power to distinguish individuals and identify clones. In conclusion, these molecular markers can be used to monitor populations of wild black-footed cats noninvasively. The genetic data will be able to contribute important information that may be used to guide future conservation initiatives.

6.
Ecol Evol ; 13(9): e10475, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37664513

RESUMEN

Pollen grains attached to insects are a valuable source of ecological information which can be used to reconstruct visitation networks. Morphological pollen identification relies on light microscopy with pollen usually stained and mounted in fuchsin jelly, which is also used to remove pollen from the bodies of insects. Pollen embedded in fuchsin jelly could potentially be used for DNA barcoding and metabarcoding (large-scale taxonomic identification of complex mixed samples) and thus provide additional information for pollination networks. In this study, we determine whether fuchsin-embedded pollen can be used for downstream molecular applications. We evaluate the quality of plant barcode (ITS) sequences amplified from DNA extracted from both fresh (untreated) pollen, and pollen which had been embedded in fuchsin jelly. We show that the addition of fuchsin to DNA extraction does not impact DNA barcode sequence quality during short-term storage. DNA extractions from both untreated and fuchsin-treated pollen produced reliable barcode sequences of high quality. Our findings suggest that pollen which has been collected, stained, and embedded in fuchsin jelly for preliminary microscopy work can be used within several days for downstream genetic analysis, though the quality of DNA from pollen stored in fuchsin jelly for extended periods is yet to be established.

7.
BMC Ecol Evol ; 21(1): 42, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33722192

RESUMEN

BACKGROUND: The bearded vulture is sparsely distributed across a wide geographic range that extends over three continents (Africa, Europe and Asia). Restriction to high-altitude mountainous habitats, low breeding rates, lack of food and a heightened level of persecution have left many local populations severely diminished or extinct. Understanding the genetic connectivity and population structure of this threatened vulture species is critical for accurately assessing their conservation status, and for appropriately managing local populations through captive breeding programmes or translocations. Previous genetic assessments of the species were mainly focused on the European and Asian populations and included limited representation of the geographically isolated southern African population. A single mitochondrial study, which focused on the African populations of the bearded vulture, detected limited genetic differentiation between populations in Ethiopia and southern Africa, with reduced haplotype diversity in the southern Africa population. In this study, we extend the previous genetic assessments of the species by examining the phylogeography and genetic connectivity of global G. barbatus populations using a panel of 14 microsatellite loci. RESULTS: Analyses revealed spatially correlated genetic differentiation between regional populations and low levels of gene flow between these population fragments. In contrast to the mitochondrial data, the microsatellite data support the management of genetically different populations as separate entities. CONCLUSIONS: Low genetic diversity and geographic isolation are known to adversely affect the evolutionary potential of a species in the long-term. The high inbreeding found in the southern African G. barbatus and, to a lesser extent, the northern African populations highlights the need for conservation programmes to effectively manage populations of this species and maintain extant genetic diversity.


Asunto(s)
Aves , África Austral , Animales , Asia , Etiopía , Europa (Continente)
8.
PLoS One ; 16(1): e0244973, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33476342

RESUMEN

South Africa is a megadiverse country with three globally recognised biodiversity hotspots within its borders. Bees in particular show high diversity and endemism in the western part of the country. Not much is currently known about the floral host preferences of indigenous bees in South Africa, with data only available from observational studies. Pollen metabarcoding provides provenance information by utilising DNA analyses instead of floral visitation and traditional microscopic identification to identify pollinator food plants, which can be time consuming and imprecise. In this study, we sampled pollen from leaf-cutter bees (Megachilidae) specimens maintained in a historic insect collection (National Collection of Insects, South Africa) that were originally collected from two florally important areas in South Africa (Succulent Karoo and Savanna) and used metabarcoding to determine pollen provenance. We also sampled pollen from leafcutter bee species with wider distributions, that extend across many different biomes, to determine if these 'generalist' species show relaxed floral host specificity in some biomes. Metabarcoding involved sequencing of the nuclear internal transcribed spacer 2 (ITS2) region. Amplicons were compared to a sequence reference database to assign taxonomic classifications to family level. Sequence reads were also clustered to OTUs based on 97% sequence similarity to estimate numbers of plant species visited. We found no significant difference in the mean number of plant taxa visited in the Succulent Karoo and Savanna regions, but the widespread group visited significantly more floral hosts. Bees from the widespread group were also characterised by a significantly different composition in pollen assemblage. The time since specimens were collected did not have an effect on the mean number of taxa visited by any of the bee species studied. This study highlights national history collections as valuable sources of temporal and spatial biodiversity data.


Asunto(s)
Abejas , Biodiversidad , Código de Barras del ADN Taxonómico , Flores , Polen/genética , Animales , Sudáfrica , Especificidad de la Especie
9.
Ecol Evol ; 10(24): 14394-14410, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33391723

RESUMEN

AIM: We incorporated genetic structure and life history phase in species distribution models (SDMs) constructed for a widespread spiny lobster, to reveal local adaptations specific to individual subspecies and predict future range shifts under the RCP 8.5 climate change scenario. LOCATION: Indo-West Pacific. METHODS: MaxEnt was used to construct present-day SDMs for the spiny lobster Panulirus homarus and individually for the three genetically distinct subspecies of which it comprises. SDMs incorporated both sea surface and benthic (seafloor) climate layers to recreate discrete influences of these habitats during the drifting larval and benthic juvenile and adult life history phases. Principle component analysis (PCA) was used to infer environmental variables to which individual subspecies were adapted. SDM projections of present-day habitat suitability were compared with predictions for the year 2,100, under the RCP 8.5 climate change scenario. RESULTS: In the PCA, salinity best explained P. h. megasculptus habitat suitability, compared with current velocity in P. h. rubellus and sea surface temperature in P. h. homarus. Drifting and benthic life history phases were adapted to different combinations of sea surface and benthic environmental variables considered. Highly suitable habitats for benthic phases were spatially enveloped within more extensive sea surface habitats suitable for drifting larvae. SDMs predicted that present-day highly suitable habitats for P. homarus will decrease by the year 2,100. MAIN CONCLUSIONS: Incorporating genetic structure in SDMs showed that individual spiny lobster subspecies had unique adaptations, which could not be resolved in species-level models. The use of sea surface and benthic climate layers revealed the relative importance of environmental variables during drifting and benthic life history phases. SDMs that included genetic structure and life history were more informative in predictive models of climate change effects.

10.
Sci Data ; 6(1): 200, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31604955

RESUMEN

Across the globe, vulture species are experiencing major population declines. A key factor for the long-term persistence of these endangered species is the maintenance of genetic diversity patterns within wild populations. The datasets presented in this descriptor includes microsatellite genotypes of 605 Cape vultures (Gyps coprotheres) drawn from across the southern African distribution of the species. Microsatellites are useful in quantifying genetic diversity at the population level. Populations of the endangered Cape vulture are currently monitored by conservation agencies and the data presented here can be used as an important baseline for future population genetic monitoring.


Asunto(s)
Aves/genética , Genotipo , Repeticiones de Microsatélite , Animales , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Variación Genética , Genética de Población , Sudáfrica
11.
Sci Rep ; 9(1): 5536, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30940898

RESUMEN

Globally, vulture species are experiencing major population declines. The southern African Cape vulture (Gyps coprotheres) has undergone severe population collapse which has led to a listing of Endangered by the IUCN. Here, a comprehensive genetic survey of G. coprotheres is conducted using microsatellite markers. Analyses revealed an overall reduction in heterozygosity compared to other vulture species that occur in South Africa (Gypaetus barbatus, Necrosyrtes monachus, and Gyps africanus). Bayesian clustering analysis and principal coordinate analysis identified shallow, subtle population structuring across South Africa. This provides some support for regional natal philopatry in this species. Despite recent reductions in population size, a genetic bottleneck was not detected by the genetic data. The G. coprotheres, however, did show a significant deficiency of overall heterozygosity. This, coupled with the elevated levels of inbreeding and reduced effective population size, suggests that G. coprotheres is genetically depauperate. Given that genetic variation is considered a prerequisite for adaptation and population health, the low genetic diversity within G. coprotheres populations is of concern and has implications for the future management and conservation of this species.


Asunto(s)
Falconiformes/genética , Variación Genética , Repeticiones de Microsatélite , Animales , Teorema de Bayes , Especies en Peligro de Extinción , Evolución Molecular , Falconiformes/clasificación , Densidad de Población , Sudáfrica
12.
PLoS One ; 14(1): e0210492, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30677051

RESUMEN

Full-length mitochondrial cytochrome c oxidase I (COI) sequence information from lobster phyllosoma larvae can be difficult to obtain when DNA is degraded or fragmented. Primers that amplify smaller fragments are also more useful in metabarcoding studies. In this study, we developed and tested a method to design a taxon-specific mini-barcode primer set for marine lobsters. The shortest, most informative portion of the COI gene region was identified in silico, and a DNA barcode gap analysis was performed to assess its reliability as species diagnostic marker. Primers were designed, and cross-species amplification success was tested on DNA extracted from a taxonomic range of spiny-, clawed-, slipper- and blind lobsters. The mini-barcode primers successfully amplified both adult and phyllosoma COI fragments, and were able to successfully delimit all species analyzed. Previously published universal primer sets were also tested and sometimes failed to amplify COI from phyllosoma samples. The newly designed taxon-specific mini-barcode primers will increase the success rate of species identification in bulk environmental samples and add to the growing DNA metabarcoding toolkit.


Asunto(s)
Biomarcadores/análisis , Código de Barras del ADN Taxonómico/métodos , Complejo IV de Transporte de Electrones/genética , Proteínas Mitocondriales/genética , Nephropidae/genética , Animales , Cartilla de ADN/genética , Nephropidae/clasificación , Subunidades de Proteína , Reproducibilidad de los Resultados , Alimentos Marinos , Especificidad de la Especie
13.
Evol Appl ; 12(2): 187-197, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30697333

RESUMEN

Pollination is a key component in agricultural food production and ecosystem maintenance, with plant-pollinator interactions an important research theme in ecological and evolutionary studies. Natural history collections provide unique access to samples collected at different spatial and temporal scales. Identification of the plant origins of pollen trapped on the bodies of pollinators in these collections provides insight into historic plant communities and pollinators' preferred floral taxa. In this study, pollen was sampled from Megachile venusta Smith bees from the National Collection of Insects, South Africa, spanning 93 years. Three barcode regions, the internal transcribed spacer 1 and 2 (ITS1 and ITS2) and ribulose-1,5-biphosphate carboxylase (rbcL), were sequenced from mixed pollen samples using a next-generation sequencing approach (MiSeq, Illumina). Sequenced reads were compared to sequence reference databases that were generated by extracting sequence and taxonomic data from GenBank. ITS1 and ITS2 were amplified successfully across all (or most) samples, while rbcL performed inconsistently. Age of sample had no impact on sequencing success. Plant classification was more informative using ITS2 than ITS1 barcode data. This study also highlights the need for comprehensive reference databases as limited local plant sequence representation in reference databases resulted in higher-level taxon classifications being more confidently interpreted. The results showed that small, insect-carried pollen samples from historic bee specimens collected from as early as 1914 can be used to obtain pollen metabarcodes. DNA metabarcoding of mixed origin pollen samples provided a faster, more accurate method of determining pollen provenance, without the need for expert palynologists. The use of historic collections to sample pollen directly from pollinators provided additional value to these collections. Sampling pollen from historic collections can potentially provide the spatial and temporal scales for investigations into changes in plant community structure or pollinator floral choice in the face of global climate change.

14.
PeerJ ; 7: e5866, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30671293

RESUMEN

Macronycteris commersoni (Hipposideridae), a bat species endemic to Madagascar, is widespread across the island and utilizes a range of habitat types including open woodland, degraded habitats, and forested areas from sea level to 1,325 m. Despite being widely distributed, there is evidence that M. commersoni exhibits morphological and bioacoustic variation across its geographical range. We investigated the fine-scale phylogeographic structure of populations in the western half of the island using extensive spatial sampling and sequence data from two mitochondrial DNA regions. Our results indicated several lineages within M. commersoni. Individuals collected from northern Madagascar formed a single monophyletic clade (clade C). A second clade (clade B) included individuals collected from the south-western portion of the island. This second clade displayed more phylogeographical partitioning with differences in mtDNA haplotypes frequency detected between populations collected in different bioclimatic regions. Lineage dispersal, genetic divergence, and timing of expansion events of M. commersoni were probably associated with Pleistocene climate fluctuations. Our data suggest that the northern and the central western regions of Madagascar may have acted as refugia for this species during periods of cooler and drier climate conditions associated with the Pleistocene.

15.
PeerJ ; 7: e6399, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30783571

RESUMEN

Building the Tree of Life (ToL) is a major challenge of modern biology, requiring advances in cyberinfrastructure, data collection, theory, and more. Here, we argue that phylogenomics stands to benefit by embracing the many heterogeneous genomic signals emerging from the first decade of large-scale phylogenetic analysis spawned by high-throughput sequencing (HTS). Such signals include those most commonly encountered in phylogenomic datasets, such as incomplete lineage sorting, but also those reticulate processes emerging with greater frequency, such as recombination and introgression. Here we focus specifically on how phylogenetic methods can accommodate the heterogeneity incurred by such population genetic processes; we do not discuss phylogenetic methods that ignore such processes, such as concatenation or supermatrix approaches or supertrees. We suggest that methods of data acquisition and the types of markers used in phylogenomics will remain restricted until a posteriori methods of marker choice are made possible with routine whole-genome sequencing of taxa of interest. We discuss limitations and potential extensions of a model supporting innovation in phylogenomics today, the multispecies coalescent model (MSC). Macroevolutionary models that use phylogenies, such as character mapping, often ignore the heterogeneity on which building phylogenies increasingly rely and suggest that assimilating such heterogeneity is an important goal moving forward. Finally, we argue that an integrative cyberinfrastructure linking all steps of the process of building the ToL, from specimen acquisition in the field to publication and tracking of phylogenomic data, as well as a culture that values contributors at each step, are essential for progress.

16.
Ecol Evol ; 8(23): 12221-12237, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30598813

RESUMEN

This study examines the fine-scale population genetic structure and phylogeography of the spiny lobster Panulirus homarus in the Western Indian Ocean. A seascape genetics approach was used to relate the observed genetic structure based on 21 microsatellite loci to ocean circulation patterns, and to determine the influence of latitude, sea surface temperature (SST), and ocean turbidity (KD490) on population-level processes. At a geospatial level, the genetic clusters recovered corresponded to three putative subspecies, P. h. rubellus from the SW Indian Ocean, P. h. megasculptus from the NW Indian Ocean, and P. h. homarus from the tropical region in-between. Virtual passive Lagrangian particles advected using satellite-derived ocean surface currents were used to simulate larval dispersal. In the SW Indian Ocean, the dispersion of particles tracked over a 4-month period provided insight into a steep genetic gradient observed at the Delagoa Bight, which separates P. h. rubellus and P. h. homarus. South of the contact zone, particles were advected southwestwards by prevailing boundary currents or were retained in nearshore eddies close to release locations. Some particles released in southeast Madagascar dispersed across the Mozambique Channel and reached the African shelf. Dispersal was characterized by high seasonal and inter-annual variability, and a large proportion of particles were dispersed far offshore and presumably lost. In the NW Indian Ocean, particles were retained within the Arabian Sea. Larval retention and self-recruitment in the Arabian Sea could explain the recent genetic divergence between P. h. megasculptus and P. h. homarus. Geographic distance and minimum SST were significantly associated with genetic differentiation in multivariate analysis, suggesting that larval tolerance to SST plays a role in shaping the population structure of P. homarus.

17.
PeerJ ; 5: e2900, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28344897

RESUMEN

BACKGROUND: Illegal trade in rare wildlife species is a major threat to many parrot species around the world. Wildlife forensics plays an important role in the preservation of endangered or threatened wildlife species. Identification of illegally harvested or traded animals through DNA techniques is one of the many methods used during forensic investigations. Natural populations of the South African endemic Cape Parrot (Poicephalus robustus) are negatively affected by the removal of eggs and chicks for the pet trade. METHODS: In this study, 16 microsatellite markers specifically designed for the South African endemic Cape Parrot (P. robustus) are assessed for their utility in forensic casework. Using these 16 loci, the genetic diversity of a subset of the captive Cape Parrot population was also assessed and compared to three wild Cape Parrot populations. RESULTS: It was determined that the full 16 locus panel has sufficient discriminatory power to be used in parentage analyses and can be used to determine if a bird has been bred in captivity and so can be legally traded or if it has been illegally removed from the wild. In cases where birds have been removed from the wild, this study suggests that a reduced 12 locus microsatellite panel has sufficient power to assign confiscated birds to geographic population of origin. DISCUSSION: The level of genetic diversity observed within the captive Cape Parrot population was similar to that observed in the wild populations, which suggests that the captive population is not suffering from decreased levels of genetic diversity. The captive Cape Parrots did however have double the number of private alleles compared to that observed in the most genetically diverse wild population. This is probably due to the presence of rare alleles present in the founder population, which has not been lost due to genetic drift, as many of the individuals tested in this study are F1-F3 wild descendants. The results from this study provide a suit of markers that can be used to aid conservation and law enforcement authorities to better control legal and illegal trade of this South African endemic.

18.
PeerJ ; 5: e3356, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28560106

RESUMEN

Accurate species description in the marine environment is critical for estimating biodiversity and identifying genetically distinct stocks. Analysis of molecular data can potentially improve species delimitations because they are easily generated and independent, and yield consistent results with high statistical power. We used classical phylogenetic (maximum likelihood and Bayesian inference) and coalescent-based methods (divergence dating with fossil calibrations and coalescent-based species delimitation) to resolve the phylogeny of the spiny lobster Panulirus homarus subspecies complex in the Indo-West Pacific. Analyses of mitochondrial data and combined nuclear and mitochondrial data recovered Panulirus homarus homarus and Panulirus homarus rubellus as separately evolving lineages, while the nuclear data trees were unresolved. Divergence dating analysis also identified Panulirus homarus homarus and Panulirus homarus rubellus as two distinct clades which diverged from a common ancestor during the Oligocene, approximately 26 million years ago. Species delimitation using coalescent-based methods corroborated these findings. A long pelagic larval life stage and the influence of ocean currents on post-larval settlement patterns suggest that a parapatric mode of speciation drives evolution in this subspecies complex. In combination, the results indicate that Panulirus homarus rubellus from the Southwest Indian Ocean is a separately evolving lineage and possibly a separate species.

19.
Ecol Evol ; 6(11): 3721-3733, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27231528

RESUMEN

Human activity has facilitated the introduction of a number of alien mammal species to the Galápagos Archipelago. Understanding the phylogeographic history and population genetics of invasive species on the Archipelago is an important step in predicting future spread and designing effective management strategies. In this study, we describe the invasion pathway of Rattus rattus across the Galápagos using microsatellite data, coupled with historical knowledge. Microsatellite genotypes were generated for 581 R. rattus sampled from 15 islands in the archipelago. The genetic data suggest that there are at least three genetic lineages of R. rattus present on the Galápagos Islands. The spatial distributions of these lineages correspond to the main centers of human settlement in the archipelago. There was limited admixture among these three lineages, and these finding coupled with low rates of gene flow among island populations suggests that interisland movement of R. rattus is rare. The low migration among islands recorded for the species will have a positive impact on future eradication efforts.

20.
Mol Ecol Resour ; 15(3): 613-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25229871

RESUMEN

The global DNA barcoding initiative has revolutionized the field of biodiversity research. Such large-scale sequencing projects require the collection of large numbers of specimens, which need to be killed and preserved in a way that is both DNA-friendly and which will keep voucher specimens in good condition for later study. Factors such as time since collection, correct storage (exposure to free water and heat) and DNA extraction protocol are known to play a role in the success of downstream molecular applications. Limited data are available on the most efficient, DNA-friendly protocol for killing. In this study, we evaluate the quality of DNA barcode (cytochrome oxidase I) sequences amplified from DNA extracted from specimens collected using three different killing methods (ethyl acetate, cyanide and freezing). Previous studies have suggested that chemicals, such as ethyl acetate and formaldehyde, degraded DNA and as such may not be appropriate for the collection of insects for DNA-based research. All Lepidoptera collected produced DNA barcodes of good quality, and our study found no clear difference in nucleotide signal strength, probability of incorrect base calling and phylogenetic utility among the three different treatment groups. Our findings suggest that ethyl acetate, cyanide and freezing can all be used to collect specimens for DNA analysis.


Asunto(s)
Código de Barras del ADN Taxonómico , ADN/genética , ADN/aislamiento & purificación , Entomología/métodos , Lepidópteros/clasificación , Lepidópteros/genética , Biología Molecular/métodos , Animales , ADN/química , Complejo IV de Transporte de Electrones/genética , Entomología/normas , Biología Molecular/normas , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA