Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 389(10): 911-921, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37672694

RESUMEN

BACKGROUND: Alveolar soft part sarcoma (ASPS) is a rare soft-tissue sarcoma with a poor prognosis and no established therapy. Recently, encouraging responses to immune checkpoint inhibitors have been reported. METHODS: We conducted an investigator-initiated, multicenter, single-group, phase 2 study of the anti-programmed death ligand 1 (PD-L1) agent atezolizumab in adult and pediatric patients with advanced ASPS. Atezolizumab was administered intravenously at a dose of 1200 mg (in patients ≥18 years of age) or 15 mg per kilogram of body weight with a 1200-mg cap (in patients <18 years of age) once every 21 days. Study end points included objective response, duration of response, and progression-free survival according to Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1, as well as pharmacodynamic biomarkers of multistep drug action. RESULTS: A total of 52 patients were evaluated. An objective response was observed in 19 of 52 patients (37%), with 1 complete response and 18 partial responses. The median time to response was 3.6 months (range, 2.1 to 19.1), the median duration of response was 24.7 months (range, 4.1 to 55.8), and the median progression-free survival was 20.8 months. Seven patients took a treatment break after 2 years of treatment, and their responses were maintained through the data-cutoff date. No treatment-related grade 4 or 5 adverse events were recorded. Responses were noted despite variable baseline expression of programmed death 1 and PD-L1. CONCLUSIONS: Atezolizumab was effective at inducing sustained responses in approximately one third of patients with advanced ASPS. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT03141684.).


Asunto(s)
Anticuerpos Monoclonales Humanizados , Antígeno B7-H1 , Sarcoma de Parte Blanda Alveolar , Adolescente , Adulto , Niño , Humanos , Recién Nacido , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antígeno B7-H1/antagonistas & inhibidores , Peso Corporal , Sarcoma de Parte Blanda Alveolar/tratamiento farmacológico , Administración Intravenosa
2.
Epigenetics ; 19(1): 2309824, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38369747

RESUMEN

Histone deacetylases (HDACs) and sirtuins (SIRTs) are important epigenetic regulators of cancer pathways. There is a limited understanding of how transcriptional regulation of their genes is affected by chemotherapeutic agents, and how such transcriptional changes affect tumour sensitivity to drug treatment. We investigated the concerted transcriptional response of HDAC and SIRT genes to 15 approved antitumor agents in the NCI-60 cancer cell line panel. Antitumor agents with diverse mechanisms of action induced upregulation or downregulation of multiple HDAC and SIRT genes. HDAC5 was upregulated by dasatinib and erlotinib in the majority of the cell lines. Tumour cell line sensitivity to kinase inhibitors was associated with upregulation of HDAC5, HDAC1, and several SIRT genes. We confirmed changes in HDAC and SIRT expression in independent datasets. We also experimentally validated the upregulation of HDAC5 mRNA and protein expression by dasatinib in the highly sensitive IGROV1 cell line. HDAC5 was not upregulated in the UACC-257 cell line resistant to dasatinib. The effects of cancer drug treatment on expression of HDAC and SIRT genes may influence chemosensitivity and may need to be considered during chemotherapy.


Asunto(s)
Antineoplásicos , Neoplasias , Sirtuinas , Dasatinib/farmacología , Metilación de ADN , Línea Celular Tumoral , Sirtuinas/genética , Sirtuinas/metabolismo , Antineoplásicos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/genética
3.
Cancer Chemother Pharmacol ; 93(3): 177-189, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38010394

RESUMEN

PURPOSE: Talazoparib is an inhibitor of the poly (ADP-ribose) polymerase (PARP) family of enzymes and is FDA-approved for patients with (suspected) deleterious germline BRCA1/2-mutated, HER2­negative, locally advanced or metastatic breast cancer. Because knowledge of the pharmacodynamic (PD) effects of talazoparib in patients has been limited to studies of PARP enzymatic activity (PARylation) in peripheral blood mononuclear cells, we developed a study to assess tumoral PD response to talazoparib treatment (NCT01989546). METHODS: We administered single-agent talazoparib (1 mg/day) orally in 28-day cycles to adult patients with advanced solid tumors harboring (suspected) deleterious BRCA1 or BRCA2 mutations. The primary objective was to examine the PD effects of talazoparib; the secondary objective was to determine overall response rate (ORR). Tumor biopsies were mandatory at baseline and post-treatment on day 8 (optional at disease progression). Biopsies were analyzed for PARylation, DNA damage response (γH2AX), and epithelial‒mesenchymal transition. RESULTS: Nine patients enrolled in this trial. Four of six patients (67%) evaluable for the primary PD endpoint exhibited a nuclear γH2AX response on day 8 of treatment, and five of six (83%) also exhibited strong suppression of PARylation. A transition towards a more mesenchymal phenotype was seen in 4 of 6 carcinoma patients, but this biological change did not affect γH2AX or PAR responses. The ORR was 55% with the five partial responses lasting a median of six cycles. CONCLUSION: Intra-tumoral DNA damage response and inhibition of PARP enzymatic activity were confirmed in patients with advanced solid tumors harboring BRCA1/2 mutations after 8 days of talazoparib treatment.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Adulto , Femenino , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Leucocitos Mononucleares , Ftalazinas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/genética
4.
Onco Targets Ther ; 15: 165-180, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237050

RESUMEN

Poly(ADP-ribose) polymerase inhibitors (PARPi) have been in clinical use since 2014 for certain patients with germline BRCA1/2 mutations, but as evidence and approvals for their use in a wider range of patients grow, the question of how best to identify patients who would benefit from PARPi becomes ever more complex. Here, we discuss the development and current state of approved selection testing for PARPi therapy and the ongoing efforts to define a broader range of homologous recombination repair deficiencies that are susceptible to PARP inhibition.

5.
Proc Natl Acad Sci U S A ; 105(52): 20752-7, 2008 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-19091954

RESUMEN

Chk1 is widely known as a DNA damage checkpoint signaling protein. Unlike many other checkpoint proteins, Chk1 also plays an essential but poorly defined role in the proliferation of unperturbed cells. Activation of Chk1 after DNA damage is known to require the phosphorylation of several C-terminal residues, including the highly conserved S317 and S345 sites. To evaluate the respective roles of these individual sites and assess their contribution to the functions of Chk1, we used a gene targeting approach to introduce point mutations into the endogenous human CHK1 locus. We report that the essential and nonessential functions of Chk1 are regulated through distinct phosphorylation events and can be genetically uncoupled. The DNA damage response function of Chk1 was nonessential. Targeted mutation of S317 abrogated G(2)/M checkpoint activation, prevented subsequent phosphorylation of Chk1, impaired efficient progression of DNA replication forks, and increased fork stalling, but did not impact viability. Thus, the nonessential DNA damage response function of Chk1 could be unambiguously linked to its role in DNA replication control. In contrast, a CHK1 allele with mutated S345 did not support viability, indicating an essential role for this residue during the unperturbed cell cycle. A distinct, physiologic mode of S345 phosphorylation, initiated at the centrosome during unperturbed mitosis was independent of codon 317 status and mechanistically distinct from the ordered and sequential phosphorylation of serine residues on Chk1 induced by DNA damage. Our findings suggest an essential regulatory role for Chk1 phosphorylation during mitotic progression.


Asunto(s)
Centrosoma/metabolismo , Daño del ADN/fisiología , Replicación del ADN/fisiología , Fase G2/fisiología , Metafase/fisiología , Proteínas Quinasas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/fisiología , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Marcación de Gen/métodos , Humanos , Mutación Missense , Fosforilación/fisiología , Proteínas Quinasas/genética , Sitios de Carácter Cuantitativo/fisiología
6.
Oncotarget ; 12(21): 2114-2130, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34676045

RESUMEN

The therapeutic efficacy of temozolomide (TMZ) is hindered by inherent and acquired resistance. Biomarkers such as MGMT expression and MMR proficiency are used as predictors of response. However, not all MGMTlow/-ve/MMRproficient patients benefit from TMZ treatment, indicating a need for additional patient selection criteria. We explored the role of ATR in mediating TMZ resistance and whether ATR inhibitors (ATRi) could reverse this resistance in multiple cancer lines. We observed that only 31% of MGMTlow/-ve/MMRproficient patient-derived and established cancer lines are sensitive to TMZ at clinically relevant concentrations. TMZ treatment resulted in DNA damage signaling in both sensitive and resistant lines, but prolonged G2/M arrest and cell death were exclusive to sensitive models. Inhibition of ATR but not ATM, sensitized the majority of resistant models to TMZ and resulted in measurable DNA damage and persistent growth inhibition. Also, compromised homologous recombination (HR) via RAD51 or BRCA1 loss only conferred sensitivity to TMZ when combined with an ATRi. Furthermore, low REV3L mRNA expression correlated with sensitivity to the TMZ and ATRi combination in vitro and in vivo. This suggests that HR defects and low REV3L levels could be useful selection criteria for enhanced clinical efficacy of an ATRi plus TMZ combination.

7.
Clin Cancer Res ; 27(14): 3834-3844, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33863809

RESUMEN

PURPOSE: The Wee1 kinase inhibitor adavosertib abrogates cell-cycle arrest, leading to cell death. Prior testing of twice-daily adavosertib in patients with advanced solid tumors determined the recommended phase II dose (RPh2D). Here, we report results for once-daily adavosertib. PATIENTS AND METHODS: A 3 + 3 dose-escalation design was used, with adavosertib given once daily on days 1 to 5 and 8 to 12 in 21-day cycles. Molecular biomarkers of Wee1 activity, including tyrosine 15-phosphorylated Cdk1/2 (pY15-Cdk), were assessed in paired tumor biopsies. Whole-exome sequencing and RNA sequencing of remaining tumor tissue identified potential predictive biomarkers. RESULTS: Among the 42 patients enrolled, the most common toxicities were gastrointestinal and hematologic; dose-limiting toxicities were grade 4 hematologic toxicity and grade 3 fatigue. The once-daily RPh2D was 300 mg. Six patients (14%) had confirmed partial responses: four ovarian, two endometrial. Adavosertib plasma exposures were similar to those from twice-daily dosing. On cycle 1 day 8 (pre-dose), tumor pY15-Cdk levels were higher than baseline in four of eight patients, suggesting target rebound during the day 5 to 8 dosing break. One patient who progressed rapidly had a tumor WEE1 mutation and potentially compensatory PKMYT1 overexpression. Baseline CCNE1 overexpression occurred in both of two responding patients, only one of whom had CCNE1 amplification, and in zero of three nonresponding patients. CONCLUSIONS: We determined the once-daily adavosertib RPh2D and observed activity in patients with ovarian or endometrial carcinoma, including two with baseline CCNE1 mRNA overexpression. Future studies will determine whether CCNE1 overexpression is a predictive biomarker for adavosertib.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Inhibidores Enzimáticos/uso terapéutico , Neoplasias/tratamiento farmacológico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirazoles/uso terapéutico , Pirimidinonas/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/análisis , Esquema de Medicación , Inhibidores Enzimáticos/efectos adversos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/química , Pirazoles/efectos adversos , Pirimidinonas/efectos adversos , Resultado del Tratamiento
8.
Oncotarget ; 11(44): 3959-3971, 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33216844

RESUMEN

BACKGROUND: TRC102 inhibits base excision repair by binding abasic sites and preventing AP endonuclease processing; it potentiates the activity of alkylating agents, including temozolomide, in murine models. In published xenograft studies, TRC102 enhanced the antitumor effect of temozolomide regardless of cell line genetic characteristics, e.g., O6-methylguanine DNA methyltransferase (MGMT), mismatch repair (MMR), or p53 status. MATERIALS AND METHODS: We conducted a phase 1 trial of TRC102 with temozolomide given orally on days 1-5 of 28-day cycles in adult patients with refractory solid tumors that had progressed on standard therapy. Tumor induction of nuclear biomarkers of DNA damage response (DDR) γH2AX, pNBs1, and Rad51 was assessed in the context of MGMT and MMR protein expression for expansion cohort patients. RESULTS: Fifty-two patients were enrolled (37 escalation, 15 expansion) with 51 evaluable for response. The recommended phase 2 dose was 125 mg TRC102, 150 mg/m2 temozolomide QDx5. Common adverse events (grade 3/4) included anemia (19%), lymphopenia (12%), and neutropenia (10%). Four patients achieved partial responses (1 non-small cell lung cancer, 2 granulosa cell ovarian cancer, and 1 colon cancer) and 13 patients had a best response of stable disease. Retrospective analysis of 15 expansion cohort patients did not demonstrate a correlation between low tumor MGMT expression and patient response, but treatment induced nuclear Rad51 responses in 6 of 12 patients. CONCLUSIONS: The combination of TRC 102 with temozolomide is active, with 4 of 51 patients experiencing a partial response and 13 of 51 experiencing stable disease, and the side effect profile is manageable.

9.
Cancer Res ; 80(2): 304-318, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31732654

RESUMEN

The significance of the phenotypic plasticity afforded by epithelial-mesenchymal transition (EMT) for cancer progression and drug resistance remains to be fully elucidated in the clinic. We evaluated epithelial-mesenchymal phenotypic characteristics across a range of tumor histologies using a validated, high-resolution digital microscopic immunofluorescence assay (IFA) that incorporates ß-catenin detection and cellular morphology to delineate carcinoma cells from stromal fibroblasts and that quantitates the individual and colocalized expression of the epithelial marker E-cadherin (E) and the mesenchymal marker vimentin (V) at subcellular resolution ("EMT-IFA"). We report the discovery of ß-catenin+ cancer cells that coexpress E-cadherin and vimentin in core-needle biopsies from patients with various advanced metastatic carcinomas, wherein these cells are transitioning between strongly epithelial and strongly mesenchymal-like phenotypes. Treatment of carcinoma models with anticancer drugs that differ in their mechanism of action (the tyrosine kinase inhibitor pazopanib in MKN45 gastric carcinoma xenografts and the combination of tubulin-targeting agent paclitaxel with the BCR-ABL inhibitor nilotinib in MDA-MB-468 breast cancer xenografts) caused changes in the tumor epithelial-mesenchymal character. Moreover, the appearance of partial EMT or mesenchymal-like carcinoma cells in MDA-MB-468 tumors treated with the paclitaxel-nilotinib combination resulted in upregulation of cancer stem cell (CSC) markers and susceptibility to FAK inhibitor. A metastatic prostate cancer patient treated with the PARP inhibitor talazoparib exhibited similar CSC marker upregulation. Therefore, the phenotypic plasticity conferred on carcinoma cells by EMT allows for rapid adaptation to cytotoxic or molecularly targeted therapy and could create a form of acquired drug resistance that is transient in nature. SIGNIFICANCE: Despite the role of EMT in metastasis and drug resistance, no standardized assessment of EMT phenotypic heterogeneity in human carcinomas exists; the EMT-IFA allows for clinical monitoring of tumor adaptation to therapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma/tratamiento farmacológico , Plasticidad de la Célula/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Células Madre Neoplásicas/patología , Animales , Antígenos CD/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor/metabolismo , Biopsia con Aguja Gruesa , Cadherinas/metabolismo , Carcinoma/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Indazoles , Masculino , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Vimentina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/metabolismo
10.
Clin Cancer Res ; 25(10): 3084-3095, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30792217

RESUMEN

PURPOSE: We sought to examine the pharmacodynamic activation of the DNA damage response (DDR) pathway in tumors following anticancer treatment for confirmation of target engagement. EXPERIMENTAL DESIGN: We evaluated the time course and spatial activation of 3 protein biomarkers of DNA damage recognition and repair (γH2AX, pS343-Nbs1, and Rad51) simultaneously in a quantitative multiplex immunofluorescence assay (IFA) to assess DDR pathway activation in tumor tissues following exposure to DNA-damaging agents. RESULTS: Because of inherent biological variability, baseline DDR biomarker levels were evaluated in a colorectal cancer microarray to establish clinically relevant thresholds for pharmacodynamic activation. Xenograft-bearing mice and clinical colorectal tumor biopsies obtained from subjects exposed to DNA-damaging therapeutic regimens demonstrated marked intratumor heterogeneity in the timing and extent of DDR biomarker activation due, in part, to the cell-cycle dependency of DNA damage biomarker expression. CONCLUSIONS: We have demonstrated the clinical utility of this DDR multiplex IFA in preclinical models and clinical specimens following exposure to multiple classes of cytotoxic agents, DNA repair protein inhibitors, and molecularly targeted agents, in both homologous recombination-proficient and -deficient contexts. Levels exceeding 4% nuclear area positive (NAP) γH2AX, 4% NAP pS343-Nbs1, and 5% cells with ≥5 Rad51 nuclear foci indicate a DDR activation response to treatment in human colorectal cancer tissue. Determination of effect-level cutoffs allows for robust interpretation of biomarkers with significant interpatient and intratumor heterogeneity; simultaneous assessment of biomarkers induced at different phases of the DDR guards against the risk of false negatives due to an ill-timed biopsy.


Asunto(s)
Antineoplásicos/farmacología , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Daño del ADN , Animales , Proteínas de Ciclo Celular/metabolismo , Clofarabina/farmacología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Reparación del ADN , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Células HCT116 , Células HT29 , Histonas/metabolismo , Humanos , Ratones , Ratones Desnudos , Proteínas Nucleares/metabolismo , Recombinasa Rad51/metabolismo , Topotecan/farmacología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
11.
Mol Cancer Ther ; 6(4): 1406-13, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17431119

RESUMEN

The diverse responses of human cells to various forms of DNA damage are controlled by a complex network of signaling proteins. There has been considerable interest in the components of this signaling apparatus as potential targets for new forms of anticancer therapy. In this report, we examine the contributions of an upstream signaling molecule, the ataxia telangiectasia mutated- and Rad3-related (ATR) protein kinase, to the resistance of cancer cells to DNA-damaging agents that are commonly used as anticancer therapeutics. Loss of ATR function in knock-in cancer cells strikingly enhanced the effects of several of the most commonly used therapeutic compounds, impeding the progression of the cell cycle and reducing long-term cancer cell survival. Loss of ATR function potentiated the toxicity of alkylating agents most strikingly, antimetabolites moderately, and double-strand break-inducing agents to a lesser extent. These results suggest that specific inhibition of ATR activity will be a valid strategy to increase the effectiveness of currently used modes of therapy.


Asunto(s)
Antineoplásicos/farmacología , Proteínas de Ciclo Celular/metabolismo , Neoplasias/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica , Proteínas de la Ataxia Telangiectasia Mutada , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Activación Enzimática/efectos de los fármacos , Fluorouracilo/farmacología , Genotipo , Células HCT116 , Humanos , Neoplasias/tratamiento farmacológico , Inhibidores de las Quinasa Fosfoinosítidos-3 , Ensayo de Tumor de Célula Madre
12.
Oncotarget ; 9(24): 17104-17116, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29682208

RESUMEN

DNA double strand breaks (DSBs) induced by cancer therapeutic agents can lead to DNA damage repair or persistent DNA damage, which can induce apoptotic cell death; however, apoptosis also induces DSBs independent of genotoxic insult. γH2AX is an established biomarker for DSBs but cannot distinguish between these mechanisms. Activated cleaved caspase-3 (CC3) promotes apoptosis by enhancing nuclear condensation, DNA fragmentation, and plasma membrane blebbing. Here, we describe an immunofluorescence assay that distinguishes between apoptosis and drug-induced DSBs by measuring coexpression of γH2AX and membrane blebbing-associated CC3 to indicate apoptosis, and γH2AX in the absence of CC3 blebbing to indicate drug-induced DNA damage. These markers were examined in xenograft models following treatment with topotecan, cisplatin, or birinapant. A topotecan regimen conferring tumor regression induced tumor cell DSBs resulting from both apoptosis and direct DNA damage. In contrast, a cisplatin regimen yielding tumor growth delay, but not regression, resulted in tumor cell DSBs due solely to direct DNA damage. MDA-MB-231 xenografts exposed to birinapant, which promotes apoptosis but does not directly induce DSBs, exhibited dose-dependent increases in colocalized γH2AX/CC3 blebbing in tumor cells. Clinical feasibility was established using formalin-fixed, paraffin-embedded biopsies from a canine cancer clinical trial; γH2AX/CC3 colocalization analysis revealed apoptosis induction by two novel indenoisoquinoline topoisomerase I inhibitors, which was consistent with pathologist-assessed apoptosis and reduction of tumor volume. This assay is ready for use in clinical trials to elucidate the mechanism of action of investigational agents and combination regimens intended to inflict DNA damage, apoptotic cell death, or both.

13.
Nucleic Acids Res ; 33(1): 66-80, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15640446

RESUMEN

The ARID (A-T Rich Interaction Domain) is a helix-turn-helix motif-based DNA-binding domain, conserved in all eukaryotes and diagnostic of a family that includes 15 distinct human proteins with important roles in development, tissue-specific gene expression and proliferation control. The 15 human ARID family proteins can be divided into seven subfamilies based on the degree of sequence identity between individual members. Most ARID family members have not been characterized with respect to their DNA-binding behavior, but it is already apparent that not all ARIDs conform to the pattern of binding AT-rich sequences. To understand better the divergent characteristics of the ARID proteins, we undertook a survey of DNA-binding properties across the entire ARID family. The results indicate that the majority of ARID subfamilies (i.e. five out of seven) bind DNA without obvious sequence preference. DNA-binding affinity also varies somewhat between subfamilies. Site-specific mutagenesis does not support suggestions made from structure analysis that specific amino acids in Loop 2 or Helix 5 are the main determinants of sequence specificity. Most probably, this is determined by multiple interacting differences across the entire ARID structure.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Secuencia de Aminoácidos , Aminoácidos Aromáticos/genética , Sitios de Unión , ADN/química , Proteínas de Unión al ADN/clasificación , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Secuencias Hélice-Giro-Hélice , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Humanos , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , Alineación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/genética
14.
Cancer Res ; 77(13): 3564-3576, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28446463

RESUMEN

To date, over 100 small-molecule oncology drugs have been approved by the FDA. Because of the inherent heterogeneity of tumors, these small molecules are often administered in combination to prevent emergence of resistant cell subpopulations. Therefore, new combination strategies to overcome drug resistance in patients with advanced cancer are needed. In this study, we performed a systematic evaluation of the therapeutic activity of over 5,000 pairs of FDA-approved cancer drugs against a panel of 60 well-characterized human tumor cell lines (NCI-60) to uncover combinations with greater than additive growth-inhibitory activity. Screening results were compiled into a database, termed the NCI-ALMANAC (A Large Matrix of Anti-Neoplastic Agent Combinations), publicly available at https://dtp.cancer.gov/ncialmanac Subsequent in vivo experiments in mouse xenograft models of human cancer confirmed combinations with greater than single-agent efficacy. Concomitant detection of mechanistic biomarkers for these combinations in vivo supported the initiation of two phase I clinical trials at the NCI to evaluate clofarabine with bortezomib and nilotinib with paclitaxel in patients with advanced cancer. Consequently, the hypothesis-generating NCI-ALMANAC web-based resource has demonstrated value in identifying promising combinations of approved drugs with potent anticancer activity for further mechanistic study and translation to clinical trials. Cancer Res; 77(13); 3564-76. ©2017 AACR.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , National Cancer Institute (U.S.) , Estados Unidos , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Nucleic Acids Res ; 32(4): 1345-53, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14982958

RESUMEN

SWI/SNF complexes are ATP-dependent chromatin remodeling complexes that are highly conserved from yeast to human. From yeast to human the complexes contain a subunit with an ARID (A-T-rich interaction domain) DNA-binding domain. In yeast this subunit is SWI1 and in human there are two closely related alternative subunits, p270 and ARID1B. We describe here a comparison of the DNA-binding properties of the yeast and human SWI/SNF ARID-containing subunits. We have determined that SWI1 is an unusual member of the ARID family in both its ARID sequence and in the fact that its DNA-binding affinity is weaker than that of other ARID family members, including its human counterparts, p270 and ARID1B. Sequence analysis and substitution mutagenesis reveals that the weak DNA-binding affinity of the SWI1 ARID is an intrinsic feature of its sequence, arising from specific variations in the major groove interaction site. In addition, this work confirms the finding that p270 binds DNA without regard to sequence specificity, excluding the possibility that the intrinsic role of the ARID is to recruit SWI/SNF complexes to specific promoter sequences. These results emphasize that care must be taken when comparing yeast and higher eukaryotic SWI/SNF complexes in terms of DNA-binding mechanisms.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Secuencia Conservada , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Sustancias Macromoleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Alineación de Secuencia , Factores de Transcripción/genética
16.
Semin Oncol ; 43(4): 453-63, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27663477

RESUMEN

Multiplex pharmacodynamic (PD) assays have the potential to increase sensitivity of biomarker-based reporting for new targeted agents, as well as revealing significantly more information about target and pathway activation than single-biomarker PD assays. Stringent methodology is required to ensure reliable and reproducible results. Common to all PD assays is the importance of reagent validation, assay and instrument calibration, and the determination of suitable response calibrators; however, multiplex assays, particularly those performed on paraffin specimens from tissue blocks, bring format-specific challenges adding a layer of complexity to assay development. We discuss existing multiplex approaches and the development of a multiplex immunofluorescence assay measuring DNA damage and DNA repair enzymes in response to anti-cancer therapeutics and describe how our novel method addresses known issues.


Asunto(s)
Antineoplásicos/farmacocinética , Biomarcadores de Tumor/análisis , Técnica del Anticuerpo Fluorescente/métodos , Neoplasias/patología , Antineoplásicos/uso terapéutico , Biopsia con Aguja Gruesa , Calibración , Química Clínica/métodos , Reparación del ADN/efectos de los fármacos , Reparación del ADN/fisiología , Enzimas/análisis , Enzimas/metabolismo , Técnica del Anticuerpo Fluorescente/normas , Humanos , Procesamiento de Imagen Asistido por Computador , Neoplasias/tratamiento farmacológico , Análisis por Matrices de Proteínas/métodos , Control de Calidad , Reproducibilidad de los Resultados
17.
Semin Oncol ; 43(4): 484-91, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27663480

RESUMEN

Robust pharmacodynamic assay results are valuable for informing go/no-go decisions about continued development of new anti-cancer agents and for identifying combinations of targeted agents, but often pharmacodynamic results are too incomplete or variable to fulfill this role. Our experience suggests that variable reagent and specimen quality are two major contributors to this problem. Minimizing all potential sources of variability in procedures for specimen collection, processing, and assay measurements is essential for meaningful comparison of pharmacodynamic biomarkers across sample time points. This is especially true in the evaluation of pre- and post-dose tumor biopsies, which suffer from high levels of tumor insufficiency due to variations in biopsy collection techniques and significant specimen heterogeneity within and across patients. Developing methods to assess heterogeneous biopsies is necessary in order to evaluate a majority of tumor biopsies collected for pharmacodynamic biomarker studies. Improved collection devices and standardization of methods are being sought in order to improve the tumor content and quality of tumor biopsies. In terms of reagent variability, we have found that stringent initial reagent qualification and quality control of R&D-grade reagents is critical to minimize lot-to-lot variability and prevent assay failures, especially for clinical pharmacodynamic questions, which often demand assay performance that meets or exceeds clinical diagnostic assay standards. Rigorous reagent specifications and use of appropriate assay quality control methodologies help to ensure consistency between assay runs, laboratories and trials to provide much needed pharmacodynamic insights into the activity of investigational agents.


Asunto(s)
Antineoplásicos/farmacocinética , Biomarcadores de Tumor/análisis , Manejo de Especímenes/métodos , Biopsia , Humanos , Indicadores y Reactivos , Neoplasias/patología , Reproducibilidad de los Resultados , Manejo de Especímenes/normas
18.
Biochem J ; 383(Pt 2): 319-25, 2004 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-15170388

RESUMEN

p270 (ARID1A) is a member of the ARID family of DNA-binding proteins and a subunit of human SWI/SNF-related complexes, which use the energy generated by an integral ATPase subunit to remodel chromatin. ARID1B is an independent gene product with an open reading frame that is more than 60% identical with p270. We have generated monoclonal antibodies specific for either p270 or ARID1B to facilitate the investigation of ARID1B and its potential interaction with human SWI/SNF complexes in vivo. Immunocomplex analysis provides direct evidence that endogenous ARID1B is associated with SWI/SNF-related complexes and indicates that p270 and ARID1B, similar to the ATPase subunits BRG1 and hBRM, are alternative, mutually exclusive subunits of the complexes. The ARID-containing subunits are not specific to the ATPases. Each associates with both BRG1 and hBRM, thus increasing the number of distinct subunit combinations known to be present in cells. Analysis of the panels of cell lines indicates that ARID1B, similar to p270, has a broad tissue distribution. The ratio of p270/ARID1B in typical cells is approx. 3.5:1, and BRG1 is distributed proportionally between the two ARID subunits. Analysis of DNA-binding behaviour indicates that ARID1B binds DNA in a non-sequence-specific manner similar to p270.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Subunidades de Proteína/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas/metabolismo , Línea Celular Tumoral , ADN/metabolismo , ADN Helicasas , Humanos , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Especificidad por Sustrato
19.
J Clin Oncol ; 33(30): 3409-15, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25964244

RESUMEN

PURPOSE: Wee1 tyrosine kinase phosphorylates and inactivates cyclin-dependent kinase (Cdk) 1/2 in response to DNA damage. AZD1775 is a first-in-class inhibitor of Wee1 kinase with single-agent antitumor activity in preclinical models. We conducted a phase I study of single-agent AZD1775 in adult patients with refractory solid tumors to determine its maximum-tolerated dose (MTD), pharmacokinetics, and modulation of phosphorylated Tyr15-Cdk (pY15-Cdk) and phosphorylated histone H2AX (γH2AX) levels in paired tumor biopsies. PATIENTS AND METHODS: AZD1775 was administered orally twice per day over 2.5 days per week for up to 2 weeks per 21-day cycle (3 + 3 design). At the MTD, paired tumor biopsies were obtained at baseline and after the fifth dose to determine pY15-Cdk and γH2AX levels. Six patients with BRCA-mutant solid tumors were also enrolled at the MTD. RESULTS: Twenty-five patients were enrolled. The MTD was established as 225 mg twice per day orally over 2.5 days per week for 2 weeks per 21-day cycle. Confirmed partial responses were observed in two patients carrying BRCA mutations: one with head and neck cancer and one with ovarian cancer. Common toxicities were myelosuppression and diarrhea. Dose-limiting toxicities were supraventricular tachyarrhythmia and myelosuppression. Accumulation of drug (t1/2 approximately 11 hours) was observed. Reduction in pY15-Cdk levels (two of five paired biopsies) and increases in γH2AX levels (three of five paired biopsies) were demonstrated. CONCLUSION: This is the first report of AZD1775 single-agent activity in patients carrying BRCA mutations. Proof-of-mechanism was demonstrated by target modulation and DNA damage response in paired tumor biopsies.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/administración & dosificación , Pirazoles/administración & dosificación , Pirimidinas/administración & dosificación , Administración Oral , Adulto , Anciano , Antineoplásicos/efectos adversos , Antineoplásicos/sangre , Antineoplásicos/farmacocinética , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/sangre , Neoplasias/enzimología , Neoplasias/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/sangre , Inhibidores de Proteínas Quinasas/farmacocinética , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Pirazoles/efectos adversos , Pirazoles/sangre , Pirazoles/farmacocinética , Pirimidinas/efectos adversos , Pirimidinas/sangre , Pirimidinas/farmacocinética , Pirimidinonas , Adulto Joven
20.
Cell Cycle ; 11(8): 1564-72, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22433954

RESUMEN

Many cancer cells are unable to maintain a numerically stable chromosome complement. It is well established that aberrant cell division can generate progeny with increased ploidy, but the genetic factors required for maintenance of diploidy are not well understood. Using an isogenic model system derived by gene targeting, we examined the role of Chk1 in p53-proficient and -deficient cancer cells. Targeted inactivation of a single CHK1 allele in stably diploid cells caused an elevated frequency of mitotic bypass if p53 was naturally mutated or experimentally disrupted by homologous recombination. CHK1-haploinsufficient, p53-deficient cells frequently underwent sequential rounds of DNA synthesis without an intervening mitosis. These aberrant cell cycles resulted in whole-genome endoreduplication and tetraploidization. The unscheduled bypass of mitosis could be suppressed by targeted reversion of a p53 mutation or by exogenous expression of Cdk1. In contrast, the number of tetraploid cells was not increased in isogenic cell populations that harbor hypomorphic ATR mutations, suggesting that suppression of unscheduled mitotic bypass is a distinct function of Chk1. These results are consistent with a recently described role for Chk1 in promoting the expression of genes that promote cell cycle transitions and demonstrate how Chk1 might prevent tetraploidization during the cancer cell cycle.


Asunto(s)
Mitosis , Proteínas Quinasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Alelos , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Daño del ADN , Diploidia , Células HCT116 , Haploinsuficiencia , Recombinación Homóloga , Humanos , Metafase , Mutación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Tetraploidía , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA