RESUMEN
Mosquitoes are important vectors for pathogens that infect humans and other vertebrate animals. Some aspects of adult mosquito behavior and mosquito ecology play an important role in determining the capacity of vector populations to transmit pathogens. Here, we re-examine factors affecting the transmission of pathogens by mosquitoes using a new approach. Unlike most previous models, this framework considers the behavioral states and state transitions of adult mosquitoes through a sequence of activity bouts. We developed a new framework for individual-based simulation models called MBITES (Mosquito Bout-based and Individual-based Transmission Ecology Simulator). In MBITES, it is possible to build models that simulate the behavior and ecology of adult mosquitoes in exquisite detail on complex resource landscapes generated by spatial point processes. We also developed an ordinary differential equation model which is the Kolmogorov forward equations for models developed in MBITES under a specific set of simplifying assumptions. While mosquito infection and pathogen development are one possible part of a mosquito's state, that is not our main focus. Using extensive simulation using some models developed in MBITES, we show that vectorial capacity can be understood as an emergent property of simple behavioral algorithms interacting with complex resource landscapes, and that relative density or sparsity of resources and the need to search can have profound consequences for mosquito populations' capacity to transmit pathogens.
Asunto(s)
Conducta Animal , Culicidae/fisiología , Malaria/transmisión , Mosquitos Vectores , Algoritmos , Animales , Biología Computacional , Simulación por Computador , Vectores de Enfermedades , Ecología , Ecosistema , Conducta Alimentaria , Femenino , Humanos , Masculino , Modelos Teóricos , Método de Montecarlo , Oviposición , ProbabilidadRESUMEN
BACKGROUND: Malaria in pregnancy remains a public health problem in sub-Saharan Africa. Identifying risk factors for malaria in pregnancy could assist in developing interventions to reduce the risk of malaria in Burkina Faso and other countries in the region. METHODS: Two cross-sectional surveys were carried out to measure Plasmodium falciparum infection using microscopy in pregnant women in Saponé Health District, central Burkina Faso. Data were collected on individual, household and environmental variables and their association with P. falciparum infection assessed using multivariable analysis. RESULTS: A total of 356 pregnant women were enrolled in the surveys, 174 during the dry season and 182 during the wet season. The mean number of doses of sulfadoxine-pyrimethamine for Intermittent Preventive Treatment in pregnancy (IPTp-SP) was 0.4 doses during the first trimester, 1.1 doses at the second and 2.3 doses at the third. Overall prevalence of P. falciparum infection by microscopy was 15.7%; 17.8% in the dry season and 13.7% in the wet season. 88.2% of pregnant women reported sleeping under an insecticide-treated net (ITN) on the previous night. The odds of P. falciparum infection was 65% lower in women who reported using an ITN compared to those that did not use an ITN (Odds ratio, OR = 0.35, 95% CI 0.14-0.86, p = 0.02). IPTp-SP was also associated with reduced P. falciparum infection, with each additional dose of IPTp-SP reducing the odds of infection by 44% (OR = 0.56, 95% CI 0.39-0.79, p = 0.001). Literate women had a 2.54 times higher odds of P. falciparum infection compared to illiterate women (95% CI 1.31-4.91, p = 0.006). CONCLUSIONS: The prevalence of P. falciparum infection among pregnant women remains high in Burkina Faso, although use of IPTp-SP and ITNs were found to reduce the odds of infection. Despite this, compliance with IPTp-SP remains far from that recommended by the National Malaria Control Programme and World Health Organization. Behaviour change communication should be strengthened to encourage compliance with protective malaria control tools during pregnancy.
Asunto(s)
Antimaláricos/administración & dosificación , Malaria Falciparum/epidemiología , Complicaciones Parasitarias del Embarazo/epidemiología , Mujeres Embarazadas , Pirimetamina/administración & dosificación , Sulfadoxina/administración & dosificación , Adolescente , Adulto , Burkina Faso/epidemiología , Estudios Transversales , Combinación de Medicamentos , Femenino , Humanos , Malaria Falciparum/parasitología , Plasmodium falciparum/fisiología , Embarazo , Complicaciones Parasitarias del Embarazo/parasitología , Prevalencia , Factores de Riesgo , Adulto JovenRESUMEN
BACKGROUND: In rural Burkina Faso, the primary malaria vector Anopheles gambiae sensu lato (s.l.) primarily feeds indoors at night. Identification of factors which influence mosquito house entry could lead to development of novel malaria vector control interventions. A study was therefore carried out to identify risk factors associated with house entry of An. gambiae s.l. in south-west Burkina Faso, an area of high insecticide resistance. METHODS: Mosquitoes were sampled monthly during the malaria transmission season using CDC light traps in 252 houses from 10 villages, each house sleeping at least one child aged five to 15 years old. Potential risk factors for house entry of An. gambiae s.l. were measured, including socio-economic status, caregiver's education and occupation, number of people sleeping in the same part of the house as the child, use of anti-mosquito measures, house construction and fittings, proximity of anopheline aquatic habitats and presence of animals near the house. Mosquito counts were compared using a generalized linear mixed-effect model with negative binomial and log link function, adjusting for repeated collections. RESULTS: 20,929 mosquitoes were caught, of which 16,270 (77.7%) were An. gambiae s.l. Of the 6691 An. gambiae s.l. identified to species, 4101 (61.3%) were An. gambiae sensu stricto and 2590 (38.7%) Anopheles coluzzii. Having a metal-roof on the child's sleeping space (IRR = 0.55, 95% CI 0.32-0.95, p = 0.03) was associated with fewer malaria vectors inside the home. CONCLUSION: This study demonstrated that the rate of An. gambiae s.l. was 45% lower in sleeping spaces with a metal roof, compared to those with thatch roofs. Improvements in house construction, including installation of metal roofs, should be considered in endemic areas of Africa to reduce the burden of malaria.
Asunto(s)
Anopheles/fisiología , Insectos Vectores/fisiología , Resistencia a los Insecticidas , Malaria/transmisión , Adolescente , Animales , Anopheles/parasitología , Burkina Faso/epidemiología , Cuidadores/educación , Niño , Preescolar , Estudios de Cohortes , Escolaridad , Femenino , Vivienda , Humanos , Insectos Vectores/parasitología , Malaria/epidemiología , Malaria/etiología , Malaria/prevención & control , Ocupaciones , Factores de Riesgo , Población Rural , Clase SocialRESUMEN
BACKGROUND: Progress in controlling malaria has stalled in recent years. Today the malaria burden is increasingly concentrated in a few countries, including Burkina Faso, where malaria is not declining. A cohort study was conducted to identify risk factors for malaria infection in children in southwest Burkina Faso, an area with high insecticide-treated net (ITN) coverage and insecticide-resistant vectors. METHODS: Incidence of Plasmodium falciparum infection was measured in 252 children aged 5 to 15 years, using active and passive detection, during the 2017 transmission season, following clearance of infection. Demographic, socio-economic, environmental, and entomological risk factors, including use of ITNs and insecticide resistance were monitored. RESULTS: During the six-month follow-up period, the overall incidence of P. falciparum infection was 2.78 episodes per child (95% CI = 2.66-2.91) by microscopy, and 3.11 (95% CI = 2.95-3.28) by polymerase chain reaction (PCR). The entomological inoculation rate (EIR) was 80.4 infective bites per child over the six-month malaria transmission season. At baseline, 80.6% of children were reported as sleeping under an ITN the previous night, although at the last survey, 23.3% of nets were in poor condition and considered no longer protective. No association was found between the rate of P. falciparum infection and either EIR (incidence rate ratio (IRR): 1.00, 95% CI: 1.00-1.00, p = 0.08) or mortality in WHO tube tests when vectors were exposed to 0.05% deltamethrin (IRR: 1.05, 95% CI: 0.73-1.50, p = 0.79). Travel history (IRR: 1.52, 95% CI: 1.45-1.59, p < 0.001) and higher socio-economic status were associated with an increased risk of P. falciparum infection (IRR: 1.05, 95% CI: 1.00-1.11, p = 0.04). CONCLUSIONS: Incidence of P. falciparum infection remains overwhelmingly high in the study area. The study findings suggest that because of the exceptionally high levels of malaria transmission in the study area, malaria elimination cannot be achieved solely by mass deployment of ITNs and additional control measures are needed.
Asunto(s)
Anopheles/efectos de los fármacos , Resistencia a los Insecticidas , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Malaria Falciparum/epidemiología , Mosquitos Vectores/efectos de los fármacos , Plasmodium falciparum/fisiología , Factores Socioeconómicos , Adolescente , Animales , Burkina Faso/epidemiología , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Malaria Falciparum/parasitología , Factores de RiesgoRESUMEN
BACKGROUND: Larviciding refers to the regular application of chemical or microbial insecticides to water bodies or water containers to kill the aquatic immature forms of the mosquito (the larvae and pupae). OBJECTIVES: To summarize research evidence evaluating whether larviciding with chemical or microbial insecticides prevents malaria transmission. SEARCH METHODS: We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE; Embase; CAB Abstracts; LILACS; the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP); ClinicalTrials.gov; and the ISRCTN registry up to 6 June 2019. SELECTION CRITERIA: We included cluster-randomized controlled trials (cRCTs), interrupted time series (ITS), randomized cross-over studies, non-randomized cross-over studies, and controlled before-and-after studies (CBAs) that compared larviciding with no larviciding. DATA COLLECTION AND ANALYSIS: We independently assessed trials for eligibility and risk of bias, and extracted data. We assessed the certainty of evidence using the GRADE approach. MAIN RESULTS: Four studies (one cRCT, two CBAs, and one non-randomized cross-over design) met the inclusion criteria. All used ground application of larvicides (people hand-delivering larvicides); one evaluated chemical and three evaluated microbial agents. Studies were carried out in The Gambia, Tanzania, Kenya, and Sri Lanka. Three studies were conducted in areas where mosquito aquatic habitats were less extensive (< 1 km²), and one where habitats were more extensive (> 1 km²; a cross-over study from The Gambia).For aquatic habitats of less than 1 km², one cRCT randomized eight villages in Sri Lanka to evaluate chemical larviciding using insect growth regulator; and two CBA studies undertaken in Kenya and Tanzania evaluated microbial larvicides. In the cRCT, larviciding across all villages was associated with lower malaria incidence (rate ratio 0.24, 4649 participants, low-certainty evidence) and parasite prevalence (risk ratio (RR) 0.26, 5897 participants, low-certainty evidence) compared to no larviciding. The two CBA studies reported lower malaria prevalence during the intervention period (parasite prevalence RR 0.79, 95% confidence interval (CI) 0.71 to 0.89; 70,902 participants; low-certainty evidence). The Kenyan study also reported a reduction in the incidence of new malaria cases (RR 0.62, 95% CI 0.38 to 1.01; 720 participants; very low-certainty evidence).For aquatic habitats of more than 1 km², the non-randomized cross-over trial using microbial larvicides did not detect an effect for malaria incidence (RR 1.58, 95% CI 0.94 to 2.65; 4226 participants), or parasite prevalence (RR 1.15, 95% CI 0.41 to 3.20; 3547 participants); both were very low-certainty evidence. The Gambia trial also reported the mean haemoglobin level, and there was no difference across the four comparisons (mean difference -0.13, 95% CI -0.40 to 0.13; 3586 participants).We were unable to summarize or pool entomological outcomes due to unreported and missing data. AUTHORS' CONCLUSIONS: Most controlled studies on larviciding have been performed with microbial agents. Ground larviciding for non-extensive larval habitats may have an effect on malaria transmission, and we do not know if there is an effect in large-scale aquatic habitats. We found no studies using larviciding application techniques that could cover large aquatic habitats, such as aerial spraying using aircraft.
Asunto(s)
Reservorios de Enfermedades/parasitología , Insecticidas/farmacología , Malaria/prevención & control , Control de Mosquitos/métodos , Animales , Culicidae , Ecosistema , Humanos , Análisis de Series de Tiempo Interrumpido , Larva/efectos de los fármacos , Ensayos Clínicos Controlados Aleatorios como Asunto/métodosRESUMEN
Unfortunately, the original article [1] contained an error mistakenly carried forward by the Production department handling this article whereby some figures and their captions were interchanged. The correct figures (Figs. 1, 2, 3, 4, 5) and captions are presented in this erratum. The original article has also been updated to reflect this correction.
RESUMEN
BACKGROUND: Insecticide resistance threatens malaria control in sub-Saharan Africa. Knockdown resistance to pyrethroids and organochlorines in Anopheles gambiae sensu lato (s.l.) is commonly caused by mutations in the gene encoding a voltage-gated sodium channel which is the target site for the insecticide. The study aimed to examine risk factors for knockdown resistance in An. gambiae s.l. and its relationship with malaria infection in children in rural Gambia. Point mutations at the Vgsc-1014 locus, were measured in An. gambiae s.l. during a 2-year trial. Cross-sectional surveys were conducted at the end of the transmission season to measure malaria infection in children aged 6 months-14 years. RESULTS: Whilst few Anopheles arabiensis and Anopheles coluzzii had Vgsc-1014 mutations, the proportion of An. gambiae sensu stricto (s.s.) mosquitoes homozygous for the Vgsc-1014F mutation increased from 64.8 to 90.9% during the study. The Vgsc-1014S or 1014F mutation was 80% higher in 2011 compared to 2010, and 27% higher in the villages with indoor residual spraying compared to those without. An increase in the proportion of An. gambiae s.l. mosquitoes with homozygous Vgsc-1014F mutations and an increase in the proportion of An. gambiae s.s. in a cluster were each associated with increased childhood malaria infection. Homozygous Vgsc-1014F mutations were, however, most common in An. gambiae s.s. and almost reached saturation during the study meaning that the two variables were colinear. CONCLUSIONS: As a result of colinearity between homozygous Vgsc-1014F mutations and An. gambiae s.s., it was not possible to determine whether insecticide resistance or species composition increased the risk of childhood malaria infection.
Asunto(s)
Anopheles/efectos de los fármacos , Proteínas de Insectos/genética , Resistencia a los Insecticidas/efectos de los fármacos , Insecticidas/farmacología , Malaria/epidemiología , Adolescente , Animales , Niño , Preescolar , Estudios Transversales , Femenino , Gambia/epidemiología , Variación Genética , Humanos , Lactante , Proteínas de Insectos/metabolismo , Malaria/parasitología , Masculino , Prevalencia , Especificidad de la EspecieRESUMEN
BACKGROUND: Vector-borne diseases cause a significant proportion of the overall burden of disease across the globe, accounting for over 10 % of the burden of infectious diseases. Despite the availability of effective interventions for many of these diseases, a lack of resources prevents their effective control. Many existing vector control interventions are known to be effective against multiple diseases, so combining vector control programmes to simultaneously tackle several diseases could offer more cost-effective and therefore sustainable disease reductions. DISCUSSION: The highly successful cross-disease integration of vaccine and mass drug administration programmes in low-resource settings acts a precedent for cross-disease vector control. Whilst deliberate implementation of vector control programmes across multiple diseases has yet to be trialled on a large scale, a number of examples of 'accidental' cross-disease vector control suggest the potential of such an approach. Combining contemporary high-resolution global maps of the major vector-borne pathogens enables us to quantify overlap in their distributions and to estimate the populations jointly at risk of multiple diseases. Such an analysis shows that over 80 % of the global population live in regions of the world at risk from one vector-borne disease, and more than half the world's population live in areas where at least two different vector-borne diseases pose a threat to health. Combining information on co-endemicity with an assessment of the overlap of vector control methods effective against these diseases allows us to highlight opportunities for such integration. Malaria, leishmaniasis, lymphatic filariasis, and dengue are prime candidates for combined vector control. All four of these diseases overlap considerably in their distributions and there is a growing body of evidence for the effectiveness of insecticide-treated nets, screens, and curtains for controlling all of their vectors. The real-world effectiveness of cross-disease vector control programmes can only be evaluated by large-scale trials, but there is clear evidence of the potential of such an approach to enable greater overall health benefit using the limited funds available.
Asunto(s)
Vectores de Enfermedades , Enfermedades Parasitarias/prevención & control , Salud Pública/métodos , Animales , HumanosRESUMEN
BACKGROUND: Recommended vector control tools against malaria, such as long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), mainly target mosquitoes that rest and feed on human hosts indoors. However, in some malaria-endemic areas, such as Southeast Asia and South America, malaria vectors primarily bite outdoors meaning that LLINs and IRS may be less effective. In these situations the use of topical insect repellents may reduce outdoor biting and morbidity from malaria. A systematic review and meta-analysis was conducted to assess the efficacy of topical insect repellents against malaria. METHODS: Studies were identified using database searches (MEDLINE, EMBASE, Web of Science and clinical trials registers), as well as reference list searches and contact with researchers. Randomized and non-randomized controlled trials were included that assessed the effect of topical repellents (all active ingredients and concentrations) on Plasmodium falciparum or Plasmodium vivax malaria or infection in malaria-endemic populations. Meta-analysis of clinical data was conducted in order to generate summary risk ratios. RESULTS: Ten trials met the inclusion criteria. Studies varied in terms of repellent active ingredient and formulation, co-interventions, study population, compliance, and follow-up period. Topical repellents showed an 18% protective efficacy against P. falciparum malaria, although this was not significant (95% CI: -8%, 38%). Similarly, the average protective efficacy of topical repellents against P. vivax malaria did not reach significance (protective efficacy: 20%, 95% CI: -37%, 53%). Exclusion of non-randomized trials from the meta-analysis did not alter the findings. CONCLUSIONS: Although topical repellents can provide individual protection against mosquitoes, the results of this meta-analysis indicate that topical repellents are unlikely to provide effective protection against malaria. However, there was substantial heterogeneity between studies included and the relatively small number of studies meant that this heterogeneity could not be fully explored in the analysis. Further well-designed trials of topical repellents at appropriate doses and alternative modes of repellent delivery, such as spatial repellents and long-lasting insecticide-treated clothing, are required.
Asunto(s)
Enfermedades Endémicas , Repelentes de Insectos/uso terapéutico , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malaria Vivax/epidemiología , Malaria Vivax/prevención & control , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del TratamientoRESUMEN
Effective larviciding for malaria control requires detailed studies of larvicide efficacies, aquatic habitat characteristics, and life history traits of target vectors. Mosquitoes with brief larval phases present narrower timeframes for biolarvicidal effects than mosquitoes with extended periods. We evaluated two biolarvicides, VectoBac (Bacillus thuringiensis israelensis (Bti)) and VectoMax (Bti and Bacillus sphaericus) against Anopheles funestus and Anopheles arabiensis in shaded and unshaded habitats; and explored how larval development might influence retreatment intervals. These tests were done in semi-natural habitats using field-collected larvae, with untreated habitats as controls. Additionally, larval development was assessed in semi-natural and natural habitats in rural Tanzania, by sampling daily and recording larval developmental stages. Both biolarvicides reduced larval densities of both species by >98% within 72 h. Efficacy lasted one week in sun-exposed habitats but remained >50% for two weeks in shaded habitats. An. funestus spent up to two weeks before pupating (13.2(10.4-16.0) days in semi-natural; 10.0(6.6-13.5) in natural habitats), while An. arabiensis required slightly over one week (8.2 (5.8-10.6) days in semi-natural; 8.3 (5.0-11.6) in natural habitats). The findings suggest that weekly larviciding, which is essential for An. arabiensis might be more effective for An. funestus whose prolonged aquatic growth allows for repeated exposures. Additionally, the longer residual effect of biolarvicides in shaded habitats indicates they may require less frequent treatments compared to sun-exposed areas.
Asunto(s)
Anopheles , Bacillus thuringiensis , Malaria , Animales , Larva , Malaria/prevención & control , Mosquitos Vectores , RetratamientoRESUMEN
BACKGROUND: Malaria is a major public health concern in Ethiopia, and its incidence could worsen with the spread of the invasive mosquito species Anopheles stephensi in the country. This study aimed to provide updates on the distribution of An. stephensi and likely household exposure in Ethiopia. METHODS: Entomological surveillance was performed in 26 urban settings in Ethiopia from 2021 to 2023. A kilometer-by-kilometer quadrant was established per town, and approximately 20 structures per quadrant were surveyed every 3 months. Additional extensive sampling was conducted in 50 randomly selected structures in four urban centers in 2022 and 2023 to assess households' exposure to An. stephensi. Prokopack aspirators and CDC light traps were used to collect adult mosquitoes, and standard dippers were used to collect immature stages. The collected mosquitoes were identified to species level by morphological keys and molecular methods. PCR assays were used to assess Plasmodium infection and mosquito blood meal source. RESULTS: Catches of adult An. stephensi were generally low (mean: 0.15 per trap), with eight positive sites among the 26 surveyed. This mosquito species was reported for the first time in Assosa, western Ethiopia. Anopheles stephensi was the predominant species in four of the eight positive sites, accounting for 75-100% relative abundance of the adult Anopheles catches. Household-level exposure, defined as the percentage of households with a peridomestic presence of An. stephensi, ranged from 18% in Metehara to 30% in Danan. Anopheles arabiensis was the predominant species in 20 of the 26 sites, accounting for 42.9-100% of the Anopheles catches. Bovine blood index, ovine blood index and human blood index values were 69.2%, 32.3% and 24.6%, respectively, for An. stephensi, and 65.4%, 46.7% and 35.8%, respectively, for An. arabiensis. None of the 197 An. stephensi mosquitoes assayed tested positive for Plasmodium sporozoite, while of the 1434 An. arabiensis mosquitoes assayed, 62 were positive for Plasmodium (10 for P. falciparum and 52 for P. vivax). CONCLUSIONS: This study shows that the geographical range of An. stephensi has expanded to western Ethiopia. Strongly zoophagic behavior coupled with low adult catches might explain the absence of Plasmodium infection. The level of household exposure to An. stephensi in this study varied across positive sites. Further research is needed to better understand the bionomics and contribution of An. stephensi to malaria transmission.
Asunto(s)
Anopheles , Malaria Falciparum , Malaria Vivax , Malaria , Animales , Bovinos , Ecología , Etiopía/epidemiología , Malaria/epidemiología , Malaria Falciparum/epidemiología , Mosquitos VectoresRESUMEN
BACKGROUND: Endemic African malaria vectors are poorly adapted to typical urban ecologies. However, Anopheles stephensi, an urban malaria vector formerly confined to South Asia and the Persian Gulf, was recently detected in Africa and may change the epidemiology of malaria across the continent. Little is known about the public health implications of An. stephensi in Africa. This study is designed to assess the relative importance of household exposure to An. stephensi and endemic malaria vectors for malaria risk in urban Sudan and Ethiopia. METHODS: Case-control studies will be conducted in 3 urban settings (2 in Sudan, 1 in Ethiopia) to assess the association between presence of An. stephensi in and around households and malaria. Cases, defined as individuals positive for Plasmodium falciparum and/or P. vivax by microscopy/rapid diagnostic test (RDT), and controls, defined as age-matched individuals negative for P. falciparum and/or P. vivax by microscopy/RDT, will be recruited from public health facilities. Both household surveys and entomological surveillance for adult and immature mosquitoes will be conducted at participant homes within 48 hours of enrolment. Adult and immature mosquitoes will be identified by polymerase chain reaction (PCR). Conditional logistic regression will be used to estimate the association between presence of An. stephensi and malaria status, adjusted for co-occurrence of other malaria vectors and participant gender. CONCLUSIONS: Findings from this study will provide evidence of the relative importance of An. stephensi for malaria burden in urban African settings, shedding light on the need for future intervention planning and policy development.
Asunto(s)
Anopheles , Mosquitos Vectores , Anopheles/parasitología , Etiopía/epidemiología , Sudán/epidemiología , Animales , Humanos , Estudios de Casos y Controles , Mosquitos Vectores/parasitología , Composición Familiar , Malaria/epidemiología , Malaria/transmisión , Malaria Falciparum/epidemiología , Malaria Falciparum/transmisión , Plasmodium falciparum/aislamiento & purificación , Femenino , MasculinoRESUMEN
Infectious diseases are emerging at an unprecedented rate while food production intensifies to keep pace with population growth. Large-scale irrigation schemes have the potential to permanently transform the landscape with health, nutritional and socio-economic benefits; yet, this also leads to a shift in land-use patterns that can promote endemic and invasive insect vectors and pathogens. The balance between ensuring food security and preventing emerging infectious disease is a necessity; yet the impact of irrigation on vector-borne diseases at the epidemiological, entomological and economic level is uncertain and depends on the geographical and climatological context. Here, we highlight the risk factors and challenges facing vector-borne disease surveillance and control in an emerging agricultural ecosystem in the lower Shire Valley region of southern Malawi. A phased large scale irrigation programme (The Shire Valley Transformation Project, SVTP) promises to transform over 40,000 ha into viable and resilient farmland, yet the valley is endemic for malaria and schistosomiasis and experiences frequent extreme flooding events following tropical cyclones. The latter exacerbate vector-borne disease risk while simultaneously making any empirical assessment of that risk a significant hurdle. We propose that the SVTP provides a unique opportunity to take a One Health approach at mitigating vector-borne disease risk while maintaining agricultural output. A long-term and multi-disciplinary approach with buy-in from multiple stakeholders will be needed to achieve this goal.
RESUMEN
BACKGROUND: Malaria transmission in Africa is facilitated by multiple species of Anopheles mosquitoes. These vectors have different behaviors and vectorial capacities and are affected differently by vector control interventions, such as insecticide-treated nets and indoor residual spraying. This review aimed to assess changes in the contribution of different vector species to malaria transmission in east and southern Africa over 20 years of widespread insecticide-based vector control. METHODS: We searched PubMed, Global Health, and Web of Science online databases for articles published between January 2000 and April 2023 that provided species-specific sporozoite rates for different malaria vectors in east and southern Africa. We extracted data on study characteristics, biting rates, sporozoite infection proportions, and entomological inoculation rates (EIR). Using EIR data, the proportional contribution of each species to malaria transmission was estimated. RESULTS: Studies conducted between 2000 and 2010 identified the Anopheles gambiae complex as the primary malaria vector, while studies conducted from 2011 to 2021 indicated the dominance of Anopheles funestus. From 2000 to 2010, in 57% of sites, An. gambiae demonstrated higher parasite infection prevalence than other Anopheles species. Anopheles gambiae also accounted for over 50% of EIR in 76% of the study sites. Conversely, from 2011 to 2021, An. funestus dominated with higher infection rates than other Anopheles in 58% of sites and a majority EIR contribution in 63% of sites. This trend coincided with a decline in overall EIR and the proportion of sporozoite-infected An. gambiae. The main vectors in the An. gambiae complex in the region were Anopheles arabiensis and An. gambiae sensu stricto (s.s.), while the important member of the An. funestus group was An. funestus s.s. CONCLUSION: The contribution of different vector species in malaria transmission has changed over the past 20 years. As the role of An. gambiae has declined, An. funestus now appears to be dominant in most settings in east and southern Africa. Other secondary vector species may play minor roles in specific localities. To improve malaria control in the region, vector control should be optimized to match these entomological trends, considering the different ecologies and behaviors of the dominant vector species.
Asunto(s)
Anopheles , Insecticidas , Malaria Falciparum , Malaria , Animales , Malaria/epidemiología , Malaria/prevención & control , Anopheles/parasitología , Malaria Falciparum/parasitología , Insectos Vectores/parasitología , Mosquitos Vectores/parasitología , Conducta Alimentaria , África Austral/epidemiología , EsporozoítosRESUMEN
Rural houses in sub-Saharan Africa are typically hot and allow malaria mosquitoes inside. We assessed whether passive or active ventilation can reduce house entry of malaria mosquitoes and cool a bedroom at night in rural Gambia. Two identical experimental houses were used: one ventilated and one unventilated (control). We evaluated the impact of (i) passive ventilation (solar chimney) and (ii) active ventilation (ceiling fan) on the number of mosquitoes collected indoors and environmental parameters (temperature, humidity, CO2, evaporation). Although the solar chimney did not reduce entry of Anopheles gambiae sensu lato, the ceiling fan reduced house entry by 91% compared with the control house. There were no differences in indoor nightly temperature, humidity or CO2 between intervention and control houses in either experiment. The solar chimney did not improve human comfort assessed using psychrometric analysis. While the ceiling fan improved human comfort pre-midnight, in the morning it was too cool compared with the control house, although this could be remedied through provision of blankets. Further improvements to the design of the solar chimney are needed. High air velocity in the ceiling fan house probably reduced mosquito house entry by preventing mosquito flight. Improved ventilation in houses may reduce malaria transmission.
Asunto(s)
Anopheles , Malaria , Animales , Humanos , Gambia , Dióxido de Carbono , Mosquitos Vectores , Vivienda , Malaria/prevención & controlRESUMEN
Western Africa is vulnerable to arboviral disease transmission, having recently experienced major outbreaks of chikungunya, dengue, yellow fever and Zika. However, there have been relatively few studies on the natural history of the two major human arbovirus vectors in this region, Aedes aegypti and Ae. albopictus, potentially limiting the implementation of effective vector control. We systematically searched for and reviewed relevant studies on the behaviour and ecology of Ae. aegypti and Ae. albopictus in Western Africa, published over the last 40 years. We identified 73 relevant studies, over half of which were conducted in Nigeria, Senegal, or Côte d'Ivoire. Most studies investigated the ecology of Ae. aegypti and Ae. albopictus, exploring the impact of seasonality and land cover on mosquito populations and identifying aquatic habitats. This review highlights the adaptation of Ae. albopictus to urban environments and its invasive potential, and the year-round maintenance of Ae. aegypti populations in water storage containers. However, important gaps were identified in the literature on the behaviour of both species, particularly Ae. albopictus. In Western Africa, Ae. aegypti and Ae. albopictus appear to be mainly anthropophilic and to bite predominantly during the day, but further research is needed to confirm this to inform planning of effective vector control strategies. We discuss the public health implications of these findings and comment on the suitability of existing and novel options for control in Western Africa.
RESUMEN
[This corrects the article DOI: 10.1371/journal.pntd.0006845.].
RESUMEN
Burkina Faso has one of the highest malaria burdens in sub-Saharan Africa despite the mass deployment of insecticide-treated nets (ITNs) and use of seasonal malaria chemoprevention (SMC) in children aged up to 5 years. Identification of risk factors for Plasmodium falciparum infection in rural Burkina Faso could help to identify and target malaria control measures. A cross-sectional survey of 1,199 children and adults was conducted during the peak malaria transmission season in the Cascades Region of south-west Burkina Faso in 2017. Logistic regression was used to identify risk factors for microscopically confirmed P. falciparum infection. A malaria transmission dynamic model was used to determine the impact on malaria cases averted of administering SMC to children aged 5-15 year old. P. falciparum prevalence was 32.8% in the study population. Children aged 5 to < 10 years old were at 3.74 times the odds (95% CI = 2.68-5.22, P < 0.001) and children aged 10 to 15 years old at 3.14 times the odds (95% CI = 1.20-8.21, P = 0.02) of P. falciparum infection compared to children aged less than 5 years old. Administration of SMC to children aged up to 10 years is predicted to avert an additional 57 malaria cases per 1000 population per year (9.4% reduction) and administration to children aged up to 15 years would avert an additional 89 malaria cases per 1000 population per year (14.6% reduction) in the Cascades Region, assuming current coverage of pyrethroid-piperonyl butoxide ITNs. Malaria infections were high in all age strata, although highest in children aged 5 to 15 years, despite roll out of core malaria control interventions. Given the burden of infection in school-age children, extension of the eligibility criteria for SMC could help reduce the burden of malaria in Burkina Faso and other countries in the region.
Asunto(s)
Amodiaquina/uso terapéutico , Antimaláricos/uso terapéutico , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Pirimetamina/uso terapéutico , Estaciones del Año , Sulfadoxina/uso terapéutico , Adolescente , Adulto , Antígenos de Protozoos/sangre , Antígenos de Protozoos/inmunología , Burkina Faso/epidemiología , Niño , Preescolar , Estudios Transversales , Combinación de Medicamentos , Quimioterapia Combinada/métodos , Femenino , Humanos , Mosquiteros Tratados con Insecticida , Malaria Falciparum/sangre , Malaria Falciparum/parasitología , Masculino , Persona de Mediana Edad , Plasmodium falciparum/aislamiento & purificación , Prevalencia , Factores de Riesgo , Población Rural , Resultado del Tratamiento , Adulto JovenRESUMEN
In sub-Saharan Africa, cooler houses would increase the coverage of insecticide-treated bednets, the primary malaria control tool. We examined whether improved ventilation, using windows screened with netting, cools houses at night and reduces malaria mosquito house entry in The Gambia. Identical houses were constructed, with badly fitting doors the only mosquito entry points. Two men slept in each house and mosquitoes captured using light traps. First, temperature and mosquito density were compared in four houses with 0, 1, 2 and 3 screened windows. Second, carbon dioxide (CO2), a major mosquito attractant, was measured in houses with (i) no windows, (ii) screened windows and (iii) screened windows and screened doors. Computational fluid dynamic modelling captured the spatial movement of CO2. Increasing ventilation made houses cooler, more comfortable and reduced malaria mosquito house entry; with three windows reducing mosquito densities by 95% (95%CI = 90-98%). Screened windows and doors reduced the indoor temperature by 0.6°C (95%CI = 0.5-0.7°C), indoor CO2 concentrations by 31% between 21.00 and 00.00 h and malaria mosquito entry by 76% (95%CI = 69-82%). Modelling shows screening reduces CO2 plumes from houses. Under our experimental conditions, cross-ventilation not only reduced indoor temperature, but reduced the density of house-entering malaria mosquitoes, by weakening CO2 plumes emanating from houses.
Asunto(s)
Anopheles , Malaria , África del Sur del Sahara , Animales , Gambia , Vivienda , Humanos , Malaria/prevención & control , Masculino , Mosquitos Vectores , TemperaturaRESUMEN
In sub-Saharan Africa, most transmission of mosquito-transmitted diseases, such as malaria or dengue, occurs within or around houses. Preventing mosquito house entry and reducing mosquito production around the home would help reduce the transmission of these diseases. Based on recent research, we make key recommendations for reducing the threat of mosquito-transmitted diseases through changes to the built environment. The mnemonic, DELIVER, recommends the following best practices: (i) Doors should be screened, self-closing and without surrounding gaps; (ii) Eaves, the space between the wall and roof, should be closed or screened; (iii) houses should be Lifted above the ground; (iv) Insecticide-treated nets should be used when sleeping in houses at night; (v) houses should be Ventilated, with at least two large-screened windows to facilitate airflow; (vi) Environmental management should be conducted regularly inside and around the home; and (vii) Roofs should be solid, rather than thatch. DELIVER is a package of interventions to be used in combination for maximum impact. Simple changes to the built environment will reduce exposure to mosquito-transmitted diseases and help keep regions free from these diseases after elimination. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.