Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Allergy Clin Immunol ; 154(2): 297-307.e13, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38485057

RESUMEN

BACKGROUND: MUPPITS-2 was a randomized, placebo-controlled clinical trial that demonstrated mepolizumab (anti-IL-5) reduced exacerbations and blood and airway eosinophils in urban children with severe eosinophilic asthma. Despite this reduction in eosinophilia, exacerbation risk persisted in certain patients treated with mepolizumab. This raises the possibility that subpopulations of airway eosinophils exist that contribute to breakthrough exacerbations. OBJECTIVE: We aimed to determine the effect of mepolizumab on airway eosinophils in childhood asthma. METHODS: Sputum samples were obtained from 53 MUPPITS-2 participants. Airway eosinophils were characterized using mass cytometry and grouped into subpopulations using unsupervised clustering analyses of 38 surface and intracellular markers. Differences in frequency and immunophenotype of sputum eosinophil subpopulations were assessed based on treatment arm and frequency of exacerbations. RESULTS: Median sputum eosinophils were significantly lower among participants treated with mepolizumab compared with placebo (58% lower, 0.35% difference [95% CI 0.01, 0.74], P = .04). Clustering analysis identified 3 subpopulations of sputum eosinophils with varied expression of CD62L. CD62Lint and CD62Lhi eosinophils exhibited significantly elevated activation marker and eosinophil peroxidase expression, respectively. In mepolizumab-treated participants, CD62Lint and CD62Lhi eosinophils were more abundant in participants who experienced exacerbations than in those who did not (100% higher for CD62Lint, 0.04% difference [95% CI 0.0, 0.13], P = .04; 93% higher for CD62Lhi, 0.21% difference [95% CI 0.0, 0.77], P = .04). CONCLUSIONS: Children with eosinophilic asthma treated with mepolizumab had significantly lower sputum eosinophils. However, CD62Lint and CD62Lhi eosinophils were significantly elevated in children on mepolizumab who had exacerbations, suggesting that eosinophil subpopulations exist that contribute to exacerbations despite anti-IL-5 treatment.


Asunto(s)
Antiasmáticos , Anticuerpos Monoclonales Humanizados , Asma , Eosinófilos , Esputo , Humanos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Eosinófilos/inmunología , Niño , Esputo/citología , Esputo/inmunología , Masculino , Femenino , Asma/tratamiento farmacológico , Asma/inmunología , Antiasmáticos/uso terapéutico , Adolescente , Interleucina-5 , Progresión de la Enfermedad
2.
J Immunol ; 194(4): 1467-79, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25595782

RESUMEN

Premature atherosclerosis is a severe complication of lupus and other systemic autoimmune disorders. Gain-of-function polymorphisms in IFN regulatory factor 5 (IRF5) are associated with an increased risk of developing lupus, and IRF5 deficiency in lupus mouse models ameliorates disease. However, whether IRF5 deficiency also protects against atherosclerosis development in lupus is not known. In this study, we addressed this question using the gld.apoE(-/-) mouse model. IRF5 deficiency markedly reduced lupus disease severity. Unexpectedly, despite the reduction in systemic immune activation, IRF5-deficient mice developed increased atherosclerosis and also exhibited metabolic dysregulation characterized by hyperlipidemia, increased adiposity, and insulin resistance. Levels of the atheroprotective cytokine IL-10 were reduced in aortae of IRF5-deficient mice, and in vitro studies demonstrated that IRF5 is required for IL-10 production downstream of TLR7 and TLR9 signaling in multiple immune cell types. Chimera studies showed that IRF5 deficiency in bone marrow-derived cells prevents lupus development and contributes in part to the increased atherosclerosis. Notably, IRF5 deficiency in non-bone marrow-derived cells also contributes to the increased atherosclerosis through the generation of hyperlipidemia and increased adiposity. Together, our results reveal a protective role for IRF5 in lupus-associated atherosclerosis that is mediated through the effects of IRF5 in both immune and nonimmune cells. These findings have implications for the proposed targeting of IRF5 in the treatment of autoimmune disease as global IRF5 inhibition may exacerbate cardiovascular disease in these patients.


Asunto(s)
Aterosclerosis/etiología , Factores Reguladores del Interferón/inmunología , Lupus Eritematoso Sistémico/inmunología , Síndrome Metabólico/etiología , Animales , Aterosclerosis/inmunología , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Factores Reguladores del Interferón/deficiencia , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/patología , Masculino , Síndrome Metabólico/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
PLoS One ; 9(7): e103478, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25076492

RESUMEN

Interferon regulatory factor 5 (IRF5) polymorphisms are strongly associated with an increased risk of developing the autoimmune disease systemic lupus erythematosus. In mouse lupus models, IRF5-deficiency was shown to reduce disease severity consistent with an important role for IRF5 in disease pathogenesis. However these mouse studies were confounded by the recent demonstration that the IRF5 knockout mouse line contained a loss-of-function mutation in the dedicator of cytokinesis 2 (DOCK2) gene. As DOCK2 regulates lymphocyte trafficking and Toll-like receptor signaling, this raised the possibility that some of the protective effects attributed to IRF5 deficiency in the mouse lupus models may instead have been due to DOCK2 deficiency. We have therefore here evaluated the effect of IRF5-deficiency in the MRL/lpr mouse lupus model in the absence of the DOCK2 mutation. We find that IRF5-deficient (IRF5-/-) MRL/lpr mice develop much less severe disease than their IRF5-sufficient (IRF5+/+) littermates. Despite markedly lower serum levels of anti-nuclear autoantibodies and reduced total splenocyte and CD4+ T cell numbers, IRF5-/- MRL/lpr mice have similar numbers of all splenic B cell subsets compared to IRF5+/+ MRL/lpr mice, suggesting that IRF5 is not involved in B cell development up to the mature B cell stage. However, IRF5-/- MRL/lpr mice have greatly reduced numbers of spleen plasmablasts and bone marrow plasma cells. Serum levels of B lymphocyte stimulator (BLyS) were markedly elevated in the MRL/lpr mice but no effect of IRF5 on serum BLyS levels was seen. Overall our data demonstrate that IRF5 contributes to disease pathogenesis in the MRL/lpr lupus model and that this is due, at least in part, to the role of IRF5 in plasma cell formation. Our data also suggest that combined therapy targeting both IRF5 and BLyS might be a particularly effective therapeutic approach in lupus.


Asunto(s)
Proteínas Activadoras de GTPasa/genética , Factores Reguladores del Interferón/genética , Lupus Eritematoso Sistémico/patología , Animales , Autoanticuerpos/sangre , Factor Activador de Células B/sangre , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Modelos Animales de Enfermedad , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido , Isotipos de Inmunoglobulinas/metabolismo , Factores Reguladores del Interferón/deficiencia , Factores Reguladores del Interferón/metabolismo , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/mortalidad , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos MRL lpr , Ratones Noqueados , Mutación , Índice de Severidad de la Enfermedad , Bazo/citología , Análisis de Supervivencia , Células TH1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA