Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Ecol Lett ; 26(7): 1029-1049, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37349261

RESUMEN

Vector-borne diseases cause significant financial and human loss, with billions of dollars spent on control. Arthropod vectors experience a complex suite of environmental factors that affect fitness, population growth and species interactions across multiple spatial and temporal scales. Temperature and water availability are two of the most important abiotic variables influencing their distributions and abundances. While extensive research on temperature exists, the influence of humidity on vector and pathogen parameters affecting disease dynamics are less understood. Humidity is often underemphasized, and when considered, is often treated as independent of temperature even though desiccation likely contributes to declines in trait performance at warmer temperatures. This Perspectives explores how humidity shapes the thermal performance of mosquito-borne pathogen transmission. We summarize what is known about its effects and propose a conceptual model for how temperature and humidity interact to shape the range of temperatures across which mosquitoes persist and achieve high transmission potential. We discuss how failing to account for these interactions hinders efforts to forecast transmission dynamics and respond to epidemics of mosquito-borne infections. We outline future research areas that will ground the effects of humidity on the thermal biology of pathogen transmission in a theoretical and empirical framework to improve spatial and temporal prediction of vector-borne pathogen transmission.


Asunto(s)
Culicidae , Enfermedades Transmitidas por Vectores , Humanos , Animales , Humedad , Mosquitos Vectores , Temperatura , Biología
2.
Malar J ; 22(1): 235, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580690

RESUMEN

BACKGROUND: Urbanization generally improves health outcomes of residents and is one of the potential factors that might contribute to reducing malaria transmission. However, the expansion of Anopheles stephensi, an urban malaria vector, poses a threat for malaria control and elimination efforts in Africa. In this paper, malaria trends in urban settings in Ethiopia from 2014 to 2019 are reported with a focus on towns and cities where An. stephensi surveys were conducted. METHODS: A retrospective study was conducted to determine malaria trends in urban districts using passive surveillance data collected at health facilities from 2014 to 2019. Data from 25 towns surveyed for An. stephensi were used in malaria trend analysis. Robust linear models were used to identify outliers and impute missing and anomalous data. The seasonal Mann-Kendal test was used to test for monotonic increasing or decreasing trends. RESULTS: A total of 9,468,970 malaria cases were reported between 2014 and 2019 through the Public Health Emergency Management (PHEM) system. Of these, 1.45 million (15.3%) cases were reported from urban settings. The incidence of malaria declined by 62% between 2014 and 2018. In 2019, the incidence increased to 15 per 1000 population from 11 to 1000 in 2018. Both confirmed (microscopy or RDT) Plasmodium falciparum (67%) and Plasmodium vivax (28%) were reported with a higher proportion of P. vivax infections in urban areas. In 2019, An. stephensi was detected in 17 towns where more than 19,804 malaria cases were reported, with most of the cases (56%) being P. falciparum. Trend analysis revealed that malaria cases increased in five towns in Afar and Somali administrative regions, decreased in nine towns, and had no obvious trend in the remaining three towns. CONCLUSION: The contribution of malaria in urban settings is not negligible in Ethiopia. With the rapid expansion of An. stephensi in the country, the receptivity is likely to be higher for malaria. Although the evidence presented in this study does not demonstrate a direct linkage between An. stephensi detection and an increase in urban malaria throughout the country, An. stephensi might contribute to an increase in malaria unless control measures are implemented as soon as possible. Targeted surveillance and effective response are needed to assess the contribution of this vector to malaria transmission and curb potential outbreaks.


Asunto(s)
Anopheles , Malaria Falciparum , Malaria Vivax , Malaria , Animales , Humanos , Malaria/epidemiología , Malaria/prevención & control , Malaria/diagnóstico , Etiopía/epidemiología , Anopheles/fisiología , Estudios Retrospectivos , Mosquitos Vectores , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología
3.
BMC Public Health ; 21(1): 788, 2021 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-33894764

RESUMEN

BACKGROUND: Despite remarkable progress in the reduction of malaria incidence, this disease remains a public health threat to a significant portion of the world's population. Surveillance, combined with early detection algorithms, can be an effective intervention strategy to inform timely public health responses to potential outbreaks. Our main objective was to compare the potential for detecting malaria outbreaks by selected event detection methods. METHODS: We used historical surveillance data with weekly counts of confirmed Plasmodium falciparum (including mixed) cases from the Amhara region of Ethiopia, where there was a resurgence of malaria in 2019 following several years of declining cases. We evaluated three methods for early detection of the 2019 malaria events: 1) the Centers for Disease Prevention and Control (CDC) Early Aberration Reporting System (EARS), 2) methods based on weekly statistical thresholds, including the WHO and Cullen methods, and 3) the Farrington methods. RESULTS: All of the methods evaluated performed better than a naïve random alarm generator. We also found distinct trade-offs between the percent of events detected and the percent of true positive alarms. CDC EARS and weekly statistical threshold methods had high event sensitivities (80-100% CDC; 57-100% weekly statistical) and low to moderate alarm specificities (25-40% CDC; 16-61% weekly statistical). Farrington variants had a wide range of scores (20-100% sensitivities; 16-100% specificities) and could achieve various balances between sensitivity and specificity. CONCLUSIONS: Of the methods tested, we found that the Farrington improved method was most effective at maximizing both the percent of events detected and true positive alarms for our dataset (> 70% sensitivity and > 70% specificity). This method uses statistical models to establish thresholds while controlling for seasonality and multi-year trends, and we suggest that it and other model-based approaches should be considered more broadly for malaria early detection.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Antimaláricos/uso terapéutico , Etiopía/epidemiología , Humanos , Incidencia , Malaria/diagnóstico , Malaria/tratamiento farmacológico , Malaria/epidemiología , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Plasmodium falciparum
4.
Sensors (Basel) ; 20(5)2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121264

RESUMEN

Despite the sparse distribution of meteorological stations and issues with missing data, vector-borne disease studies in Ethiopia have been commonly conducted based on the relationships between these diseases and ground-based in situ measurements of climate variation. High temporal and spatial resolution satellite-based remote-sensing data is a potential alternative to address this problem. In this study, we evaluated the accuracy of daily gridded temperature and rainfall datasets obtained from satellite remote sensing or spatial interpolation of ground-based observations in relation to data from 22 meteorological stations in Amhara Region, Ethiopia, for 2003-2016. Famine Early Warning Systems Network (FEWS-Net) Land Data Assimilation System (FLDAS) interpolated temperature showed the lowest bias (mean error (ME) ≈1-3 °C), and error (mean absolute error (MAE) ≈1-3 °C), and the highest correlation with day-to-day variability of station temperature (COR ≈0.7-0.8). In contrast, temperature retrievals from the blended Advanced Microwave Scanning Radiometer on Earth Observing Satellite (AMSR-E) and Advanced Microwave Scanning Radiometer 2 (AMSR2) passive microwave and Moderate-resolution Imaging Spectroradiometer (MODIS) land-surface temperature data had higher bias and error. Climate Hazards group InfraRed Precipitation with Stations (CHIRPS) rainfall showed the least bias and error (ME ≈-0.2-0.2 mm, MAE ≈0.5-2 mm), and the best agreement (COR ≈0.8), with station rainfall data. In contrast FLDAS had the higher bias and error and the lowest agreement and Global Precipitation Mission/Tropical Rainfall Measurement Mission (GPM/TRMM) data were intermediate. This information can inform the selection of geospatial data products for use in climate and disease research and applications.


Asunto(s)
Enfermedades Transmitidas por Vectores/diagnóstico , Monitoreo Biológico/métodos , Clima , Etiopía , Meteorología/métodos , Lluvia , Imágenes Satelitales/métodos , Temperatura
5.
Environ Model Softw ; 119: 275-284, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33814961

RESUMEN

Time series models of malaria cases can be applied to forecast epidemics and support proactive interventions. Mosquito life history and parasite development are sensitive to environmental factors such as temperature and precipitation, and these variables are often used as predictors in malaria models. However, malaria-environment relationships can vary with ecological and social context. We used a genetic algorithm to optimize a spatiotemporal malaria model by aggregating locations into clusters with similar environmental sensitivities. We tested the algorithm in the Amhara Region of Ethiopia using seven years of weekly Plasmodium falciparum data from 47 districts and remotely-sensed land surface temperature, precipitation, and spectral indices as predictors. The best model identified six clusters, and the districts in each cluster had distinctive responses to the environmental predictors. We conclude that spatial stratification can improve the fit of environmentally-driven disease models, and genetic algorithms provide a practical and effective approach for identifying these clusters.

6.
Malar J ; 16(1): 89, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28231803

RESUMEN

BACKGROUND: Early indication of an emerging malaria epidemic can provide an opportunity for proactive interventions. Challenges to the identification of nascent malaria epidemics include obtaining recent epidemiological surveillance data, spatially and temporally harmonizing this information with timely data on environmental precursors, applying models for early detection and early warning, and communicating results to public health officials. Automated web-based informatics systems can provide a solution to these problems, but their implementation in real-world settings has been limited. METHODS: The Epidemic Prognosis Incorporating Disease and Environmental Monitoring for Integrated Assessment (EPIDEMIA) computer system was designed and implemented to integrate disease surveillance with environmental monitoring in support of operational malaria forecasting in the Amhara region of Ethiopia. A co-design workshop was held with computer scientists, epidemiological modelers, and public health partners to develop an initial list of system requirements. Subsequent updates to the system were based on feedback obtained from system evaluation workshops and assessments conducted by a steering committee of users in the public health sector. RESULTS: The system integrated epidemiological data uploaded weekly by the Amhara Regional Health Bureau with remotely-sensed environmental data freely available from online archives. Environmental data were acquired and processed automatically by the EASTWeb software program. Additional software was developed to implement a public health interface for data upload and download, harmonize the epidemiological and environmental data into a unified database, automatically update time series forecasting models, and generate formatted reports. Reporting features included district-level control charts and maps summarizing epidemiological indicators of emerging malaria outbreaks, environmental risk factors, and forecasts of future malaria risk. CONCLUSIONS: Successful implementation and use of EPIDEMIA is an important step forward in the use of epidemiological and environmental informatics systems for malaria surveillance. Developing software to automate the workflow steps while remaining robust to continual changes in the input data streams was a key technical challenge. Continual stakeholder involvement throughout design, implementation, and operation has created a strong enabling environment that will facilitate the ongoing development, application, and testing of the system.


Asunto(s)
Clima , Brotes de Enfermedades , Monitoreo Epidemiológico , Malaria/epidemiología , Vigilancia de la Población/métodos , Etiopía/epidemiología , Predicción , Humanos , Malaria/parasitología , Programas Informáticos
7.
Proc Natl Acad Sci U S A ; 110(10): 4134-9, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23431143

RESUMEN

In the US Corn Belt, a recent doubling in commodity prices has created incentives for landowners to convert grassland to corn and soybean cropping. Here, we use land cover data from the National Agricultural Statistics Service Cropland Data Layer to assess grassland conversion from 2006 to 2011 in the Western Corn Belt (WCB): five states including North Dakota, South Dakota, Nebraska, Minnesota, and Iowa. Our analysis identifies areas with elevated rates of grass-to-corn/soy conversion (1.0-5.4% annually). Across the WCB, we found a net decline in grass-dominated land cover totaling nearly 530,000 ha. With respect to agronomic attributes of lands undergoing grassland conversion, corn/soy production is expanding onto marginal lands characterized by high erosion risk and vulnerability to drought. Grassland conversion is also concentrated in close proximity to wetlands, posing a threat to waterfowl breeding in the Prairie Pothole Region. Longer-term land cover trends from North Dakota and Iowa indicate that recent grassland conversion represents a persistent shift in land use rather than short-term variability in crop rotation patterns. Our results show that the WCB is rapidly moving down a pathway of increased corn and soybean cultivation. As a result, the window of opportunity for realizing the benefits of a biofuel industry based on perennial bioenergy crops, rather than corn ethanol and soy biodiesel, may be closing in the WCB.


Asunto(s)
Agricultura , Conservación de los Recursos Naturales , Zea mays/crecimiento & desarrollo , Ecosistema , Medio Oeste de Estados Unidos , Poaceae/crecimiento & desarrollo , Glycine max/crecimiento & desarrollo , Humedales
8.
Environ Model Softw ; 74: 247-257, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26644779

RESUMEN

Satellite remote sensing produces an abundance of environmental data that can be used in the study of human health. To support the development of early warning systems for mosquito-borne diseases, we developed an open-source, client based software application to enable the Epidemiological Applications of Spatial Technologies (EASTWeb). Two major design decisions were full automation of the discovery, retrieval and processing of remote sensing data from multiple sources, and making the system easily modifiable in response to changes in data availability and user needs. Key innovations that helped to achieve these goals were the implementation of a software framework for data downloading and the design of a scheduler that tracks the complex dependencies among multiple data processing tasks and makes the system resilient to external errors. EASTWeb has been successfully applied to support forecasting of West Nile virus outbreaks in the United States and malaria epidemics in the Ethiopian highlands.

9.
Environ Model Softw ; 74: 238-246, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26644778

RESUMEN

Sensors are becoming ubiquitous in everyday life, generating data at an unprecedented rate and scale. However, models that assess impacts of human activities on environmental and human health, have typically been developed in contexts where data scarcity is the norm. Models are essential tools to understand processes, identify relationships, associations and causality, formalize stakeholder mental models, and to quantify the effects of prevention and interventions. They can help to explain data, as well as inform the deployment and location of sensors by identifying hotspots and areas of interest where data collection may achieve the best results. We identify a paradigm shift in how the integration of models and sensors can contribute to harnessing 'Big Data' and, more importantly, make the vital step from 'Big Data' to 'Big Information'. In this paper, we illustrate current developments and identify key research needs using human and environmental health challenges as an example.

10.
Water Resour Res ; 50(11): 8791-8806, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25653462

RESUMEN

Malaria is a major global public health problem, particularly in Sub-Saharan Africa. The spatial heterogeneity of malaria can be affected by factors such as hydrological processes, physiography, and land cover patterns. Tropical wetlands, for example, are important hydrological features that can serve as mosquito breeding habitats. Mapping and monitoring of wetlands using satellite remote sensing can thus help to target interventions aimed at reducing malaria transmission. The objective of this study was to map wetlands and other major land cover types in the Amhara region of Ethiopia and to analyze district-level associations of malaria and wetlands across the region. We evaluated three random forests classification models using remotely sensed topographic and spectral data based on Shuttle Radar Topographic Mission (SRTM) and Landsat TM/ETM+ imagery, respectively. The model that integrated data from both sensors yielded more accurate land cover classification than single-sensor models. The resulting map of wetlands and other major land cover classes had an overall accuracy of 93.5%. Topographic indices and subpixel level fractional cover indices contributed most strongly to the land cover classification. Further, we found strong spatial associations of percent area of wetlands with malaria cases at the district level across the dry, wet, and fall seasons. Overall, our study provided the most extensive map of wetlands for the Amhara region and documented spatiotemporal associations of wetlands and malaria risk at a broad regional level. These findings can assist public health personnel in developing strategies to effectively control and eliminate malaria in the region. KEY POINTS: Remote sensing produced an accurate wetland map for the Ethiopian highlandsWetlands were associated with spatial variability in malaria riskMapping and monitoring wetlands can improve malaria spatial decision support.

11.
JAMIA Open ; 7(1): ooad110, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38186743

RESUMEN

Objectives: West Nile virus (WNV) is the most common mosquito-borne disease in the United States. Predicting the location and timing of outbreaks would allow targeting of disease prevention and mosquito control activities. Our objective was to develop software (ArboMAP) for routine WNV forecasting using public health surveillance data and meteorological observations. Materials and Methods: ArboMAP was implemented using an R markdown script for data processing, modeling, and report generation. A Google Earth Engine application was developed to summarize and download weather data. Generalized additive models were used to make county-level predictions of WNV cases. Results: ArboMAP minimized the number of manual steps required to make weekly forecasts, generated information that was useful for decision-makers, and has been tested and implemented in multiple public health institutions. Discussion and Conclusion: Routine prediction of mosquito-borne disease risk is feasible and can be implemented by public health departments using ArboMAP.

12.
Trop Med Int Health ; 17(10): 1192-201, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22863170

RESUMEN

To understand the drivers and consequences of malaria in epidemic-prone regions, it is important to know whether epidemics emerge independently in different areas as a consequence of local contingencies, or whether they are synchronised across larger regions as a result of climatic fluctuations and other broad-scale drivers. To address this question, we collected historical malaria surveillance data for the Amhara region of Ethiopia and analysed them to assess the consistency of various indicators of malaria risk and determine the dominant spatial and temporal patterns of malaria within the region. We collected data from a total of 49 districts from 1999-2010. Data availability was better for more recent years and more data were available for clinically diagnosed outpatient malaria cases than confirmed malaria cases. Temporal patterns of outpatient malaria case counts were correlated with the proportion of outpatients diagnosed with malaria and confirmed malaria case counts. The proportion of outpatients diagnosed with malaria was spatially clustered, and these cluster locations were generally consistent from year to year. Outpatient malaria cases exhibited spatial synchrony at distances up to 300 km, supporting the hypothesis that regional climatic variability is an important driver of epidemics. Our results suggest that decomposing malaria risk into separate spatial and temporal components may be an effective strategy for modelling and forecasting malaria risk across large areas. They also emphasise both the value and limitations of working with historical surveillance datasets and highlight the importance of enhancing existing surveillance efforts.


Asunto(s)
Clima , Epidemias , Malaria/epidemiología , Etiopía/epidemiología , Humanos , Vigilancia de la Población , Factores de Riesgo
13.
Malar J ; 11: 165, 2012 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-22583705

RESUMEN

BACKGROUND: Malaria is one of the leading public health problems in most of sub-Saharan Africa, particularly in Ethiopia. Almost all demographic groups are at risk of malaria because of seasonal and unstable transmission of the disease. Therefore, there is a need to develop malaria early-warning systems to enhance public health decision making for control and prevention of malaria epidemics. Data from orbiting earth-observing sensors can monitor environmental risk factors that trigger malaria epidemics. Remotely sensed environmental indicators were used to examine the influences of climatic and environmental variability on temporal patterns of malaria cases in the Amhara region of Ethiopia. METHODS: In this study seasonal autoregressive integrated moving average (SARIMA) models were used to quantify the relationship between malaria cases and remotely sensed environmental variables, including rainfall, land-surface temperature (LST), vegetation indices (NDVI and EVI), and actual evapotranspiration (ETa) with lags ranging from one to three months. Predictions from the best model with environmental variables were compared to the actual observations from the last 12 months of the time series. RESULTS: Malaria cases exhibited positive associations with LST at a lag of one month and positive associations with indicators of moisture (rainfall, EVI and ETa) at lags from one to three months. SARIMA models that included these environmental covariates had better fits and more accurate predictions, as evidenced by lower AIC and RMSE values, than models without environmental covariates. CONCLUSIONS: Malaria risk indicators such as satellite-based rainfall estimates, LST, EVI, and ETa exhibited significant lagged associations with malaria cases in the Amhara region and improved model fit and prediction accuracy. These variables can be monitored frequently and extensively across large geographic areas using data from earth-observing sensors to support public health decisions.


Asunto(s)
Malaria/epidemiología , Tecnología de Sensores Remotos/métodos , Etiopía/epidemiología , Humanos , Desarrollo de la Planta , Lluvia , Medición de Riesgo , Temperatura
14.
Remote Sens Environ ; 125: 147-156, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23049143

RESUMEN

Environmental variability has important influences on mosquito life cycles and understanding the spatial and temporal patterns of mosquito populations is critical for mosquito control and vector-borne disease prevention. Meteorological data used for model-based predictions of mosquito abundance and life cycle dynamics are typically acquired from ground-based weather stations; however, data availability and completeness are often limited by sparse networks and resource availability. In contrast, environmental measurements from satellite remote sensing are more spatially continuous and can be retrieved automatically. This study compared environmental measurements from the NASA Advanced Microwave Scanning Radiometer on EOS (AMSR-E) and in situ weather station data to examine their ability to predict the abundance of two important mosquito species (Aedes vexans and Culex tarsalis) in Sioux Falls, South Dakota, USA from 2005 to 2010. The AMSR-E land parameters included daily surface water inundation fraction, surface air temperature, soil moisture, and microwave vegetation opacity. The AMSR-E derived models had better fits and higher forecasting accuracy than models based on weather station data despite the relatively coarse (25-km) spatial resolution of the satellite data. In the AMSR-E models, air temperature and surface water fraction were the best predictors of Aedes vexans, whereas air temperature and vegetation opacity were the best predictors of Cx. tarsalis abundance. The models were used to extrapolate spatial, seasonal, and interannual patterns of climatic suitability for mosquitoes across eastern South Dakota. Our findings demonstrate that environmental metrics derived from satellite passive microwave radiometry are suitable for predicting mosquito population dynamics and can potentially improve the effectiveness of mosquito-borne disease early warning systems.

15.
Sci Data ; 9(1): 208, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577816

RESUMEN

Malaria epidemics can be triggered by fluctuations in temperature and precipitation that influence vector mosquitoes and the malaria parasite. Identifying and monitoring environmental risk factors can thus provide early warning of future outbreaks. Satellite Earth observations provide relevant measurements, but obtaining these data requires substantial expertise, computational resources, and internet bandwidth. To support malaria forecasting in Ethiopia, we developed software for Retrieving Environmental Analytics for Climate and Health (REACH). REACH is a cloud-based application for accessing data on land surface temperature, spectral indices, and precipitation using the Google Earth Engine (GEE) platform. REACH can be implemented using the GEE code editor and JavaScript API, as a standalone web app, or as package with the Python API. Users provide a date range and data for 852 districts in Ethiopia are automatically summarized and downloaded as tables. REACH was successfully used in Ethiopia to support a pilot malaria early warning project in the Amhara region. The software can be extended to new locations and modified to access other environmental datasets through GEE.


Asunto(s)
Malaria , Programas Informáticos , Animales , Clima , Nube Computacional , Planeta Tierra , Etiopía/epidemiología , Malaria/prevención & control
16.
J Med Entomol ; 59(6): 1936-1946, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36189969

RESUMEN

Exposure to mosquito-borne diseases is influenced by landscape patterns and microclimates associated with land cover. These influences can be particularly strong in heterogeneous urban landscapes where human populations are concentrated. We investigated how land cover and climate influenced abundances of Ae. albopictus (Skuse) (Diptera: Culicidae) and Cx. quinquefasciatus (Say) (Diptera: Culicidae) in Norman, Oklahoma (United States). From June-October 2019 and May-October 2020 we sampled mosquitoes along an urban-rural gradient using CO2 baited BG Sentinel traps. Microclimate sensors at these sites measured temperature and humidity. We mapped environmental variables using satellite images from Landsat, Sentinel-2, and VIIRS, and the CHIRPS rainfall dataset. We also obtained meteorological data from the closest weather station. We compared statistical models of mosquito abundance based on microclimate, satellite, weather station, and land cover data. Mosquitoes were more abundant on trap days with higher temperature and relative humidity. Rainfall 2 wk prior to the trap day negatively affected mosquito abundances. Impervious surface cover was positively associated with Cx. quinquefasciatus and tree cover was negatively associated with Ae. albopictus. Among the data sources, models based on satellite variables and land cover data had the best fits for Ae. albopictus (R2 = 0.7) and Cx. quinquefasciatus (R2 = 0.51). Models based on weather station or microclimate data had weaker fits (R2 between 0.09 and 0.17) but were improved by adding land cover variables (R2 between 0.44 and 0.61). These results demonstrate the potential for using satellite remote sensing for mosquito habitat analyses in urban areas.


Asunto(s)
Aedes , Culex , Humanos , Animales , Mosquitos Vectores , Ecosistema , Vectores de Enfermedades
17.
Environ Health Perspect ; 130(8): 87006, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35972761

RESUMEN

BACKGROUND: West Nile virus (WNV), a global arbovirus, is the most prevalent mosquito-transmitted infection in the United States. Forecasts of WNV risk during the upcoming transmission season could provide the basis for targeted mosquito control and disease prevention efforts. We developed the Arbovirus Mapping and Prediction (ArboMAP) WNV forecasting system and used it in South Dakota from 2016 to 2019. This study reports a post hoc forecast validation and model comparison. OBJECTIVES: Our objective was to validate historical predictions of WNV cases with independent data that were not used for model calibration. We tested the hypothesis that predictive models based on mosquito surveillance data combined with meteorological variables were more accurate than models based on mosquito or meteorological data alone. METHODS: The ArboMAP system incorporated models that predicted the weekly probability of observing one or more human WNV cases in each county. We compared alternative models with different predictors including a) a baseline model based only on historical WNV cases, b) mosquito models based on seasonal patterns of infection rates, c) environmental models based on lagged meteorological variables, including temperature and vapor pressure deficit, d) combined models with mosquito infection rates and lagged meteorological variables, and e) ensembles of two or more combined models. During the WNV season, models were calibrated using data from previous years and weekly predictions were made using data from the current year. Forecasts were compared with observed cases to calculate the area under the receiver operating characteristic curve (AUC) and other metrics of spatial and temporal prediction error. RESULTS: Mosquito and environmental models outperformed the baseline model that included county-level averages and seasonal trends of WNV cases. Combined models were more accurate than models based only on meteorological or mosquito infection variables. The most accurate model was a simple ensemble mean of the two best combined models. Forecast accuracy increased rapidly from early June through early July and was stable thereafter, with a maximum AUC of 0.85. The model predictions captured the seasonal pattern of WNV as well as year-to-year variation in case numbers and the geographic pattern of cases. DISCUSSION: The predictions reached maximum accuracy early enough in the WNV season to allow public health responses before the peak of human cases in August. This early warning is necessary because other indicators of WNV risk, including early reports of human cases and mosquito abundance, are poor predictors of case numbers later in the season. https://doi.org/10.1289/EHP10287.


Asunto(s)
Conceptos Meteorológicos , Fiebre del Nilo Occidental , Predicción , Humanos , América del Norte/epidemiología , Vigilancia en Salud Pública , Estaciones del Año , Estados Unidos/epidemiología , Fiebre del Nilo Occidental/epidemiología , Virus del Nilo Occidental
18.
Lancet Planet Health ; 6(11): e909-e918, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36370729

RESUMEN

To date, there are few examples of implementation science studies that help guide climate-related health adaptation. Implementation science is the study of methods to promote the adoption and integration of evidence-based tools, interventions, and policies into practice to improve population health. These studies can provide the needed empirical evidence to prioritise and inform implementation of health adaptation efforts. This Personal View discusses five case studies that deployed disease early warning systems around the world. These cases studies illustrate challenges to deploying early warning systems and guide recommendations for implementation science approaches to enhance future research. We propose theory-informed approaches to understand multilevel barriers, design strategies to overcome those barriers, and analyse the ability of those strategies to advance the uptake and scale-up of climate-related health interventions. These findings build upon previous theoretical work by grounding implementation science recommendations and guidance in the context of real-world practice, as detailed in the case studies.


Asunto(s)
Cambio Climático , Ciencia de la Implementación
19.
J Med Entomol ; 48(3): 669-79, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21661329

RESUMEN

This study compared the spatial and temporal patterns of Culex tarsalis Coquillett and Aedes vexans Meigen populations and examined their relationships with land cover types and climatic variability in Sioux Falls, SD. Between 24 and 30 CDC CO2-baited light traps were set annually in Sioux Falls from May to September 2005-2008. Land cover data were acquired from the 2001 National Land Cover Dataset and the percentages of selected land cover types were calculated within a 600-m buffer zone around each trap. Meteorological information was summarized from local weather stations. Cx. tarsalis exhibited stronger spatial autocorrelation than Ae. vexans. Land cover analysis indicated that Cx. tarsalis was positively correlated with grass/hay, and Ae. vexans was positively correlated with wetlands. No associations were identified between irrigation and the host-seeking population of each species. Higher temperature in the current week and 2 wk prior and higher precipitation 3-4 wk before collection of host-seeking adult mosquitoes had positive influences on Cx. tarsalis abundance. Temperature in the current week and rainfall 2-3 wk before sampling had positive influences on Ae. vexans abundance. This study revealed the different influences of weather and land cover on important mosquito species in the Northern Great Plains region, which can be used to improve local vector control strategies and West Nile virus prevention efforts.


Asunto(s)
Aedes/fisiología , Culex/fisiología , Animales , Ecosistema , Femenino , Insectos Vectores/fisiología , Densidad de Población , South Dakota , Tiempo (Meteorología) , Fiebre del Nilo Occidental/prevención & control , Virus del Nilo Occidental/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA