Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Oecologia ; 160(4): 817-25, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19412624

RESUMEN

Understanding the conditions under which species traits, species-environment relationships, and the spatial structure of the landscape interact to shape local communities requires quantifying the relative contributions of space and the environment on community composition. Using analogous sampling of arboreal and terrestrial oribatid mite communities across a large spatial scale in a temperate rainforest, we quantified the variation in oribatid mite community structure relating to environmental and spatial factors, and tested whether terrestrial and arboreal communities demonstrated a difference in their patterns of community composition based on the assumption of differences in dispersal potential. The expectation that terrestrial oribatid mite communities are spatially structured while arboreal communities are environmentally structured was supported by our analyses at the level of variation in beta diversity, but not by assessing beta diversity itself. We found that terrestrial oribatid mite communities with active, cursorial dispersal demonstrate spatial constraint consistent with reduced long-distance dispersal opportunities and high environmental dissimilarity among sites. Arboreal communities, which potentially disperse long distances via passive aerial vectors, show a spatial signature associated with patterns in beta diversity and a correlation with environmental dissimilarities among sites. In the arboreal community, moisture content of the substrate, total tree height, and average sampled branch height were significant factors explaining beta diversity patterns. For ground-dwelling species, predator abundance and soil type were important local determinants of community variability. Both communities showed clear spatial structuring, suggesting that dispersal limitation continues to influence community composition across multiple forest watershed locations. Our results provide evidence of dispersal-maintained diversity patterns in response to local environmental factors in arboreal and terrestrial communities. The relative importance of stochastic dispersal assembly may be dependent on strong deterministic effects associated with micro-site and macro-site environmental variation, particularly across large spatial scales.


Asunto(s)
Biodiversidad , Demografía , Ecosistema , Ambiente , Ácaros/fisiología , Animales , Colombia Británica , Modelos Biológicos , Especificidad de la Especie , Árboles
2.
PLoS One ; 10(12): e0144110, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26633187

RESUMEN

Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2 km of distance, 40 m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods.


Asunto(s)
Distribución Animal/fisiología , Artrópodos/fisiología , Biodiversidad , Ecosistema , Animales , Panamá , Filogenia , Bosque Lluvioso , Clima Tropical
3.
Science ; 338(6113): 1481-4, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23239740

RESUMEN

Most eukaryotic organisms are arthropods. Yet, their diversity in rich terrestrial ecosystems is still unknown. Here we produce tangible estimates of the total species richness of arthropods in a tropical rainforest. Using a comprehensive range of structured protocols, we sampled the phylogenetic breadth of arthropod taxa from the soil to the forest canopy in the San Lorenzo forest, Panama. We collected 6144 arthropod species from 0.48 hectare and extrapolated total species richness to larger areas on the basis of competing models. The whole 6000-hectare forest reserve most likely sustains 25,000 arthropod species. Notably, just 1 hectare of rainforest yields >60% of the arthropod biodiversity held in the wider landscape. Models based on plant diversity fitted the accumulated species richness of both herbivore and nonherbivore taxa exceptionally well. This lends credence to global estimates of arthropod biodiversity developed from plant models.


Asunto(s)
Artrópodos/anatomía & histología , Artrópodos/clasificación , Biodiversidad , Animales , Herbivoria , Lluvia , Árboles , Clima Tropical
4.
Oecologia ; 147(2): 335-47, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16228247

RESUMEN

Forest canopies support diverse assemblages of free-living mites. Recent studies suggest mite species complementarity between canopy and terrestrial soils is as high as 80-90%. However, confounding variation in habitat quality and resource patchiness between ground and canopy has not been controlled in previous comparative studies. We used experimental litter bags with standardized microhabitat structure and resource quality to contrast the colonization dynamics of 129 mite species utilizing needle accumulations on the ground vs in the canopy of Abies amabilis trees in a temperate montane forest in Canada. Mite abundance and species richness per litter bag were five to eight times greater on the ground than in the canopy, and composition differed markedly at family-, genus-, and species-level. Seventy-seven species (57%) were restricted to either ground or canopy litter bags, but many of these species were rare (n<5 individuals). Of 49 'common' species, 30.6% were entirely restricted to one habitat, which is considerably lower than most published estimates. In total, 87.5% of canopy specialists had rare vagrants on the ground, whereas only 51.9% of ground specialists had rare vagrants in the canopy. Canonical correspondence analysis of mite community structure showed high species turnover through time and a high degree of specialization for early-, mid-, and late-successional stages of litter decomposition, in both ground and canopy mites. In addition, distinct assemblages of ground-specialist mites dominated each elevation (800, 1000, and 1200 m), whereas few canopy-specialist mites had defined elevational preferences. This suggests that canopy mites may have greater tolerance for wide variation in environmental conditions than soil mites. The degree of species turnover between adjacent mountains also differed markedly, with 46.5% turnover of ground species, but 63.4% turnover of canopy species between the two montane areas. While ground and canopy assemblages are similar in total biodiversity, it appears that local mite richness (alpha diversity) is higher on the ground, whereas species turnover between sites (beta diversity) is higher in the canopy.


Asunto(s)
Ácaros y Garrapatas/fisiología , Biodiversidad , Hojas de la Planta , Árboles , Animales , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA